全转录组分析凸显了模拟微重力条件下氮循环细菌的营养限制。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Tom Verbeelen, Celia Alvarez Fernandez, Thanh Huy Nguyen, Surya Gupta, Raf Aarts, Kevin Tabury, Baptiste Leroy, Ruddy Wattiez, Siegfried E Vlaeminck, Natalie Leys, Ramon Ganigué, Felice Mastroleo
{"title":"全转录组分析凸显了模拟微重力条件下氮循环细菌的营养限制。","authors":"Tom Verbeelen, Celia Alvarez Fernandez, Thanh Huy Nguyen, Surya Gupta, Raf Aarts, Kevin Tabury, Baptiste Leroy, Ruddy Wattiez, Siegfried E Vlaeminck, Natalie Leys, Ramon Ganigué, Felice Mastroleo","doi":"10.1038/s41526-024-00345-z","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO<sub>2</sub>-producing C. testosteroni and the tripartite culture, a PermaLife<sup>TM</sup> PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O<sub>2</sub> limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"3"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781756/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity.\",\"authors\":\"Tom Verbeelen, Celia Alvarez Fernandez, Thanh Huy Nguyen, Surya Gupta, Raf Aarts, Kevin Tabury, Baptiste Leroy, Ruddy Wattiez, Siegfried E Vlaeminck, Natalie Leys, Ramon Ganigué, Felice Mastroleo\",\"doi\":\"10.1038/s41526-024-00345-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO<sub>2</sub>-producing C. testosteroni and the tripartite culture, a PermaLife<sup>TM</sup> PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O<sub>2</sub> limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"3\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781756/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00345-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00345-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

再生生命支持系统(RLSS)在实现远距离太空旅行期间的自给自足方面将发挥至关重要的作用。尿液转化为基于硝酸盐的液态肥料是大多数再生生命支持系统的关键过程。本研究描述了模拟微重力(SMG)对 Comamonas testosteroni、Nitrosomonas europaea、Nitrobacter winogradskyi 以及三者的三方培养物的影响,其背景是微生态生命支持系统替代方案(MELiSSA)的氮回收。旋转细胞培养系统(RCCS)和随机定位机(RPM)被用作 SMG 的类似物。对培养物的转录反应进行了阐明。对于产生二氧化碳的 C. testosteroni 和三方培养物,使用了安装在内部 3D 打印支架上的 PermaLifeTM PL-70 细胞培养袋,以消除 SMG 培养过程中气泡的形成。基因表达的变化表明,SMG 中的流体动力学造成了营养和氧气的限制。参与尿素水解和硝化的基因受到的影响很小,而反硝化相关基因的表达则有所增加。这些发现凸显了太空氮回收的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity.

Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信