{"title":"GPT-4 在大肠腺瘤组织病理图像检测和分类中的准确性。","authors":"Thiyaphat Laohawetwanit, Chutimon Namboonlue, Sompon Apornvirat","doi":"10.1136/jcp-2023-209304","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the accuracy of Chat Generative Pre-trained Transformer (ChatGPT) powered by GPT-4 in histopathological image detection and classification of colorectal adenomas using the diagnostic consensus provided by pathologists as a reference standard.</p><p><strong>Methods: </strong>A study was conducted with 100 colorectal polyp photomicrographs, comprising an equal number of adenomas and non-adenomas, classified by two pathologists. These images were analysed by classic GPT-4 for 1 time in October 2023 and custom GPT-4 for 20 times in December 2023. GPT-4's responses were compared against the reference standard through statistical measures to evaluate its proficiency in histopathological diagnosis, with the pathologists further assessing the model's descriptive accuracy.</p><p><strong>Results: </strong>GPT-4 demonstrated a median sensitivity of 74% and specificity of 36% for adenoma detection. The median accuracy of polyp classification varied, ranging from 16% for non-specific changes to 36% for tubular adenomas. Its diagnostic consistency, indicated by low kappa values ranging from 0.06 to 0.11, suggested only poor to slight agreement. All of the microscopic descriptions corresponded with their diagnoses. GPT-4 also commented about the limitations in its diagnoses (eg, slide diagnosis best done by pathologists, the inadequacy of single-image diagnostic conclusions, the need for clinical data and a higher magnification view).</p><p><strong>Conclusions: </strong>GPT-4 showed high sensitivity but low specificity in detecting adenomas and varied accuracy for polyp classification. However, its diagnostic consistency was low. This artificial intelligence tool acknowledged its diagnostic limitations, emphasising the need for a pathologist's expertise and additional clinical context.</p>","PeriodicalId":15391,"journal":{"name":"Journal of Clinical Pathology","volume":" ","pages":"202-207"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy of GPT-4 in histopathological image detection and classification of colorectal adenomas.\",\"authors\":\"Thiyaphat Laohawetwanit, Chutimon Namboonlue, Sompon Apornvirat\",\"doi\":\"10.1136/jcp-2023-209304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>To evaluate the accuracy of Chat Generative Pre-trained Transformer (ChatGPT) powered by GPT-4 in histopathological image detection and classification of colorectal adenomas using the diagnostic consensus provided by pathologists as a reference standard.</p><p><strong>Methods: </strong>A study was conducted with 100 colorectal polyp photomicrographs, comprising an equal number of adenomas and non-adenomas, classified by two pathologists. These images were analysed by classic GPT-4 for 1 time in October 2023 and custom GPT-4 for 20 times in December 2023. GPT-4's responses were compared against the reference standard through statistical measures to evaluate its proficiency in histopathological diagnosis, with the pathologists further assessing the model's descriptive accuracy.</p><p><strong>Results: </strong>GPT-4 demonstrated a median sensitivity of 74% and specificity of 36% for adenoma detection. The median accuracy of polyp classification varied, ranging from 16% for non-specific changes to 36% for tubular adenomas. Its diagnostic consistency, indicated by low kappa values ranging from 0.06 to 0.11, suggested only poor to slight agreement. All of the microscopic descriptions corresponded with their diagnoses. GPT-4 also commented about the limitations in its diagnoses (eg, slide diagnosis best done by pathologists, the inadequacy of single-image diagnostic conclusions, the need for clinical data and a higher magnification view).</p><p><strong>Conclusions: </strong>GPT-4 showed high sensitivity but low specificity in detecting adenomas and varied accuracy for polyp classification. However, its diagnostic consistency was low. This artificial intelligence tool acknowledged its diagnostic limitations, emphasising the need for a pathologist's expertise and additional clinical context.</p>\",\"PeriodicalId\":15391,\"journal\":{\"name\":\"Journal of Clinical Pathology\",\"volume\":\" \",\"pages\":\"202-207\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jcp-2023-209304\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jcp-2023-209304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Accuracy of GPT-4 in histopathological image detection and classification of colorectal adenomas.
Aims: To evaluate the accuracy of Chat Generative Pre-trained Transformer (ChatGPT) powered by GPT-4 in histopathological image detection and classification of colorectal adenomas using the diagnostic consensus provided by pathologists as a reference standard.
Methods: A study was conducted with 100 colorectal polyp photomicrographs, comprising an equal number of adenomas and non-adenomas, classified by two pathologists. These images were analysed by classic GPT-4 for 1 time in October 2023 and custom GPT-4 for 20 times in December 2023. GPT-4's responses were compared against the reference standard through statistical measures to evaluate its proficiency in histopathological diagnosis, with the pathologists further assessing the model's descriptive accuracy.
Results: GPT-4 demonstrated a median sensitivity of 74% and specificity of 36% for adenoma detection. The median accuracy of polyp classification varied, ranging from 16% for non-specific changes to 36% for tubular adenomas. Its diagnostic consistency, indicated by low kappa values ranging from 0.06 to 0.11, suggested only poor to slight agreement. All of the microscopic descriptions corresponded with their diagnoses. GPT-4 also commented about the limitations in its diagnoses (eg, slide diagnosis best done by pathologists, the inadequacy of single-image diagnostic conclusions, the need for clinical data and a higher magnification view).
Conclusions: GPT-4 showed high sensitivity but low specificity in detecting adenomas and varied accuracy for polyp classification. However, its diagnostic consistency was low. This artificial intelligence tool acknowledged its diagnostic limitations, emphasising the need for a pathologist's expertise and additional clinical context.
期刊介绍:
Journal of Clinical Pathology is a leading international journal covering all aspects of pathology. Diagnostic and research areas covered include histopathology, virology, haematology, microbiology, cytopathology, chemical pathology, molecular pathology, forensic pathology, dermatopathology, neuropathology and immunopathology. Each issue contains Reviews, Original articles, Short reports, Correspondence and more.