比利时一家污水处理厂产生的无机和有机污染物对邻近地表水和地下水的影响

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Mingyue Luo, Yiqi Su, Delphine Jenny Vandeputte, Yuwei Jia, Guanlei Li, Willy Baeyens, Marijke Huysmans, Marc Elskens, Yue Gao
{"title":"比利时一家污水处理厂产生的无机和有机污染物对邻近地表水和地下水的影响","authors":"Mingyue Luo, Yiqi Su, Delphine Jenny Vandeputte, Yuwei Jia, Guanlei Li, Willy Baeyens, Marijke Huysmans, Marc Elskens, Yue Gao","doi":"10.1007/s11783-024-1806-5","DOIUrl":null,"url":null,"abstract":"<p>Under the pressure of global droughts and water shortage, it is essential to evolve toward a sustainable and robust water system. One possible avenue is the maximum reuse of treated wastewater, but the quality of which determines its reuse. Therefore, inorganic (Cd, Pb, Cr, Ni, Cu, and As) and organic (xenoestrogens and polycyclic aromatic contaminants, PACs) contaminants were monthly monitored in an effluent of the wastewater treatment plant (WWTP), the surrounding surface waters and the local groundwater in Belgium. Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed. In addition, Diffusive Gradients in Thin-films (DGT) was used <i>in situ</i> to obtain bioavailable metal fractions. In the WWTP effluent and surface waters, only Ni exceeds the Annual Average-Environmental Quality Standard (AA-EQS), while in the groundwater, dissolved As was the predominant element. Moreover, in the surface and effluent waters the highest lability degrees were observed for Cd and Ni. The concentrations of these metal species in the effluent water were lower than in the other water bodies. Micro-organic pollutants, xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor - Chemical Activated LUciferase gene eXpression (ER &amp; AhR-CALUX) assays. Since the annual averaged (AA) bioequivalent concentration of E2 (0.18 ng/L) is below the AA-EQS standard (0.4 ng/L), and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration (MAC), the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems, at least in a short-term.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of inorganic and organic pollutants from a Belgian wastewater treatment plant on adjacent surface and groundwaters\",\"authors\":\"Mingyue Luo, Yiqi Su, Delphine Jenny Vandeputte, Yuwei Jia, Guanlei Li, Willy Baeyens, Marijke Huysmans, Marc Elskens, Yue Gao\",\"doi\":\"10.1007/s11783-024-1806-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under the pressure of global droughts and water shortage, it is essential to evolve toward a sustainable and robust water system. One possible avenue is the maximum reuse of treated wastewater, but the quality of which determines its reuse. Therefore, inorganic (Cd, Pb, Cr, Ni, Cu, and As) and organic (xenoestrogens and polycyclic aromatic contaminants, PACs) contaminants were monthly monitored in an effluent of the wastewater treatment plant (WWTP), the surrounding surface waters and the local groundwater in Belgium. Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed. In addition, Diffusive Gradients in Thin-films (DGT) was used <i>in situ</i> to obtain bioavailable metal fractions. In the WWTP effluent and surface waters, only Ni exceeds the Annual Average-Environmental Quality Standard (AA-EQS), while in the groundwater, dissolved As was the predominant element. Moreover, in the surface and effluent waters the highest lability degrees were observed for Cd and Ni. The concentrations of these metal species in the effluent water were lower than in the other water bodies. Micro-organic pollutants, xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor - Chemical Activated LUciferase gene eXpression (ER &amp; AhR-CALUX) assays. Since the annual averaged (AA) bioequivalent concentration of E2 (0.18 ng/L) is below the AA-EQS standard (0.4 ng/L), and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration (MAC), the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems, at least in a short-term.</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1806-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1806-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在全球干旱和缺水的压力下,建立一个可持续的、强大的水系统至关重要。一个可能的途径是最大限度地重复利用经处理的废水,但废水的质量决定了其重复利用的程度。因此,我们每月都会对比利时污水处理厂(WWTP)的出水、周围地表水和当地地下水中的无机污染物(镉、铅、铬、镍、铜和砷)和有机污染物(异雌激素和多环芳烃污染物)进行监测。对这些水体中无机污染物的溶解浓度和颗粒浓度进行了分析。此外,还在现场使用了薄片中的扩散梯度(DGT)来获取生物可利用的金属组分。在污水处理厂出水和地表水中,只有镍超过了年度平均环境质量标准(AA-EQS),而在地下水中,溶解砷是主要元素。此外,在地表水和污水中,镉和镍的溶解度最高。这些金属物种在污水中的浓度低于其他水体。微有机污染物、异雌激素和 PACs 采用雌激素和芳基烃受体-化学激活鳞状核酸酶基因表达(ER & AhR-CALUX)双重检测方法进行分析。由于 E2 的年均生物当量浓度(0.18 纳克/升)低于 AA-EQS 标准(0.4 纳克/升),且苯并[a]芘的生物当量浓度从未超过最大容许浓度(MAC),因此,至少在短期内,将处理后的废水再生和回用于地下水补充和农业灌溉不会造成环境问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of inorganic and organic pollutants from a Belgian wastewater treatment plant on adjacent surface and groundwaters

Impact of inorganic and organic pollutants from a Belgian wastewater treatment plant on adjacent surface and groundwaters

Under the pressure of global droughts and water shortage, it is essential to evolve toward a sustainable and robust water system. One possible avenue is the maximum reuse of treated wastewater, but the quality of which determines its reuse. Therefore, inorganic (Cd, Pb, Cr, Ni, Cu, and As) and organic (xenoestrogens and polycyclic aromatic contaminants, PACs) contaminants were monthly monitored in an effluent of the wastewater treatment plant (WWTP), the surrounding surface waters and the local groundwater in Belgium. Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed. In addition, Diffusive Gradients in Thin-films (DGT) was used in situ to obtain bioavailable metal fractions. In the WWTP effluent and surface waters, only Ni exceeds the Annual Average-Environmental Quality Standard (AA-EQS), while in the groundwater, dissolved As was the predominant element. Moreover, in the surface and effluent waters the highest lability degrees were observed for Cd and Ni. The concentrations of these metal species in the effluent water were lower than in the other water bodies. Micro-organic pollutants, xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor - Chemical Activated LUciferase gene eXpression (ER & AhR-CALUX) assays. Since the annual averaged (AA) bioequivalent concentration of E2 (0.18 ng/L) is below the AA-EQS standard (0.4 ng/L), and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration (MAC), the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems, at least in a short-term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信