{"title":"基于热-流-固耦合的航空发动机高速旋转唇形密封磨损预测研究","authors":"Jian Wei, YuXi Xue, Jing Tian, Fei Guo","doi":"10.1108/ilt-10-2023-0320","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this research paper, the authors focus on the high-speed rotating lip seal of aircraft engines. Using the hybrid lubrication theory, a thermal-fluid-solid coupled numerical simulation model is established to investigate the influence of parameters such as contact pressure distribution, temperature rise and leakage rate on the sealing performance under different operating conditions. By incorporating the Rhee wear theory and combining simulation results with experimental data, a method for predicting the wear of the rotating seal lip profile is proposed. Experimental validation is conducted using a high-speed rotating test rig.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results indicate that as the speed increases, the rise in frictional heat leads to a decrease in the sealing performance of the lip seal contact region. The experimental results show a similar trend to the numerical simulation results, and considering the effect of frictional heat, the predicted wear of the lip seal profile aligns more closely with the actual wear curve. This highlights the importance of considering the influence of frictional heat in the analysis of rotating seal mechanisms.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study provides a reference for the prediction of wear profiles of engine high-speed rotary lip seals.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"72 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the prediction of high-speed rotary lip seal wear in aero-engine based on heat-fluid-solid coupling\",\"authors\":\"Jian Wei, YuXi Xue, Jing Tian, Fei Guo\",\"doi\":\"10.1108/ilt-10-2023-0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this research paper, the authors focus on the high-speed rotating lip seal of aircraft engines. Using the hybrid lubrication theory, a thermal-fluid-solid coupled numerical simulation model is established to investigate the influence of parameters such as contact pressure distribution, temperature rise and leakage rate on the sealing performance under different operating conditions. By incorporating the Rhee wear theory and combining simulation results with experimental data, a method for predicting the wear of the rotating seal lip profile is proposed. Experimental validation is conducted using a high-speed rotating test rig.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results indicate that as the speed increases, the rise in frictional heat leads to a decrease in the sealing performance of the lip seal contact region. The experimental results show a similar trend to the numerical simulation results, and considering the effect of frictional heat, the predicted wear of the lip seal profile aligns more closely with the actual wear curve. This highlights the importance of considering the influence of frictional heat in the analysis of rotating seal mechanisms.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study provides a reference for the prediction of wear profiles of engine high-speed rotary lip seals.</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-10-2023-0320\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-10-2023-0320","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on the prediction of high-speed rotary lip seal wear in aero-engine based on heat-fluid-solid coupling
Purpose
This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.
Design/methodology/approach
In this research paper, the authors focus on the high-speed rotating lip seal of aircraft engines. Using the hybrid lubrication theory, a thermal-fluid-solid coupled numerical simulation model is established to investigate the influence of parameters such as contact pressure distribution, temperature rise and leakage rate on the sealing performance under different operating conditions. By incorporating the Rhee wear theory and combining simulation results with experimental data, a method for predicting the wear of the rotating seal lip profile is proposed. Experimental validation is conducted using a high-speed rotating test rig.
Findings
The results indicate that as the speed increases, the rise in frictional heat leads to a decrease in the sealing performance of the lip seal contact region. The experimental results show a similar trend to the numerical simulation results, and considering the effect of frictional heat, the predicted wear of the lip seal profile aligns more closely with the actual wear curve. This highlights the importance of considering the influence of frictional heat in the analysis of rotating seal mechanisms.
Originality/value
This study provides a reference for the prediction of wear profiles of engine high-speed rotary lip seals.
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.