可测算子代数中的一个分块投影算子

IF 0.5 Q3 MATHEMATICS
A. M. Bikchentaev
{"title":"可测算子代数中的一个分块投影算子","authors":"A. M. Bikchentaev","doi":"10.3103/s1066369x23100031","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(\\tau \\)</span> be a faithful normal semifinite trace on a von Neumann algebra <span>\\(\\mathcal{M}\\)</span>. The block projection operator <span>\\({{\\mathcal{P}}_{n}}\\)</span> <span>\\((n \\geqslant 2)\\)</span> in the *-algebra <span>\\(S(\\mathcal{M},\\tau )\\)</span> of all <span>\\(\\tau \\)</span>-measurable operators is investigated. It has been shown that <span>\\(A \\leqslant n{{\\mathcal{P}}_{n}}(A)\\)</span> for any operator <span>\\(A \\in S{{(\\mathcal{M},\\tau )}^{ + }}\\)</span>. If <span>\\(A \\in S{{(\\mathcal{M},\\tau )}^{ + }}\\)</span> is invertible in <span>\\(S(\\mathcal{M},\\tau )\\)</span>, then <span>\\({{\\mathcal{P}}_{n}}(A)\\)</span> is invertible in <span>\\(S(\\mathcal{M},\\tau )\\)</span>. Let <span>\\(A = A\\text{*} \\in S(\\mathcal{M},\\tau )\\)</span>. Then, (i) if <span>\\({{\\mathcal{P}}_{n}}(A) \\leqslant A\\)</span> (or if <span>\\({{\\mathcal{P}}_{n}}(A) \\geqslant A\\)</span>), then <span>\\({{\\mathcal{P}}_{n}}(A) = A\\)</span>, (ii) <span>\\({{\\mathcal{P}}_{n}}(A) = A\\)</span> if and only if <span>\\({{P}_{k}}A = A{{P}_{k}}\\)</span> for all <span>\\(k = 1, \\ldots ,n\\)</span>; and (iii) if <span>\\(A,{{\\mathcal{P}}_{n}}(A) \\in \\mathcal{M}\\)</span> are projections, then <span>\\({{\\mathcal{P}}_{n}}(A) = A\\)</span>. Four corollaries have been obtained. One example presented in paper (A. Bikchentaev and F. Sukochev, “Inequalities for the Block Projection Operators,” J. Funct. Anal. <b>280</b> (7), 108851 (2021)) has been refined and strengthened.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Block Projection Operator in the Algebra of Measurable Operators\",\"authors\":\"A. M. Bikchentaev\",\"doi\":\"10.3103/s1066369x23100031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(\\\\tau \\\\)</span> be a faithful normal semifinite trace on a von Neumann algebra <span>\\\\(\\\\mathcal{M}\\\\)</span>. The block projection operator <span>\\\\({{\\\\mathcal{P}}_{n}}\\\\)</span> <span>\\\\((n \\\\geqslant 2)\\\\)</span> in the *-algebra <span>\\\\(S(\\\\mathcal{M},\\\\tau )\\\\)</span> of all <span>\\\\(\\\\tau \\\\)</span>-measurable operators is investigated. It has been shown that <span>\\\\(A \\\\leqslant n{{\\\\mathcal{P}}_{n}}(A)\\\\)</span> for any operator <span>\\\\(A \\\\in S{{(\\\\mathcal{M},\\\\tau )}^{ + }}\\\\)</span>. If <span>\\\\(A \\\\in S{{(\\\\mathcal{M},\\\\tau )}^{ + }}\\\\)</span> is invertible in <span>\\\\(S(\\\\mathcal{M},\\\\tau )\\\\)</span>, then <span>\\\\({{\\\\mathcal{P}}_{n}}(A)\\\\)</span> is invertible in <span>\\\\(S(\\\\mathcal{M},\\\\tau )\\\\)</span>. Let <span>\\\\(A = A\\\\text{*} \\\\in S(\\\\mathcal{M},\\\\tau )\\\\)</span>. Then, (i) if <span>\\\\({{\\\\mathcal{P}}_{n}}(A) \\\\leqslant A\\\\)</span> (or if <span>\\\\({{\\\\mathcal{P}}_{n}}(A) \\\\geqslant A\\\\)</span>), then <span>\\\\({{\\\\mathcal{P}}_{n}}(A) = A\\\\)</span>, (ii) <span>\\\\({{\\\\mathcal{P}}_{n}}(A) = A\\\\)</span> if and only if <span>\\\\({{P}_{k}}A = A{{P}_{k}}\\\\)</span> for all <span>\\\\(k = 1, \\\\ldots ,n\\\\)</span>; and (iii) if <span>\\\\(A,{{\\\\mathcal{P}}_{n}}(A) \\\\in \\\\mathcal{M}\\\\)</span> are projections, then <span>\\\\({{\\\\mathcal{P}}_{n}}(A) = A\\\\)</span>. Four corollaries have been obtained. One example presented in paper (A. Bikchentaev and F. Sukochev, “Inequalities for the Block Projection Operators,” J. Funct. Anal. <b>280</b> (7), 108851 (2021)) has been refined and strengthened.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23100031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23100031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

AbstractLet \(\tau \) be a faithful normal semifinite trace on a von Neumann algebra \(\mathcal{M}\)。研究了所有可测算子的*代数\(S(\mathcal{M},\tau )\)中的块投影算子\({\mathcal{P}}_{n}}\)\((n \geqslant 2)\)。研究表明,对于任何算子 \(A\in S{{(\mathcal{M},\tau )}^{ + }}\),\(A leqslant n{{\mathcal{P}}_{n}}(A)\) 都是可测算子。如果 \(A \in S{(\mathcal{M},\tau )}^{ + }}\) 在 \(S(\mathcal{M},\tau )\) 中是可逆的,那么 \({{mathcal{P}}_{n}}(A)\) 在 \(S(\mathcal{M},\tau )\) 中就是可逆的。让(A = A\text{*}\在 S(\mathcal{M},\tau )\).那么,(i) 如果 \({{math\cal{P}}_{n}}(A) \leqslant A\) (或者如果 \({{math\cal{P}}_{n}}(A) \geqslant A\) ),那么 \({{math\cal{P}}_{n}}(A) = A\)、(ii) \({{mathcal{P}}_{n}}(A) = A\) if and only if \({{P}_{k}}A = A{{P}_{k}}\) for all \(k = 1, \ldots ,n\);和 (iii) 如果 \(A,{{mathcal{P}}_{n}}(A) \ in \mathcal{M}\) 是投影,那么 \({{mathcal{P}}_{n}}(A) = A\).我们得到了四个推论。一个例子见论文(A. Bikchentaev 和 F. Sukochev, "Inequalities for the Block Projection Operators," J. Funct.Anal.280 (7), 108851 (2021))中提出的一个例子得到了完善和加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Block Projection Operator in the Algebra of Measurable Operators

Abstract

Let \(\tau \) be a faithful normal semifinite trace on a von Neumann algebra \(\mathcal{M}\). The block projection operator \({{\mathcal{P}}_{n}}\) \((n \geqslant 2)\) in the *-algebra \(S(\mathcal{M},\tau )\) of all \(\tau \)-measurable operators is investigated. It has been shown that \(A \leqslant n{{\mathcal{P}}_{n}}(A)\) for any operator \(A \in S{{(\mathcal{M},\tau )}^{ + }}\). If \(A \in S{{(\mathcal{M},\tau )}^{ + }}\) is invertible in \(S(\mathcal{M},\tau )\), then \({{\mathcal{P}}_{n}}(A)\) is invertible in \(S(\mathcal{M},\tau )\). Let \(A = A\text{*} \in S(\mathcal{M},\tau )\). Then, (i) if \({{\mathcal{P}}_{n}}(A) \leqslant A\) (or if \({{\mathcal{P}}_{n}}(A) \geqslant A\)), then \({{\mathcal{P}}_{n}}(A) = A\), (ii) \({{\mathcal{P}}_{n}}(A) = A\) if and only if \({{P}_{k}}A = A{{P}_{k}}\) for all \(k = 1, \ldots ,n\); and (iii) if \(A,{{\mathcal{P}}_{n}}(A) \in \mathcal{M}\) are projections, then \({{\mathcal{P}}_{n}}(A) = A\). Four corollaries have been obtained. One example presented in paper (A. Bikchentaev and F. Sukochev, “Inequalities for the Block Projection Operators,” J. Funct. Anal. 280 (7), 108851 (2021)) has been refined and strengthened.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信