非负数矩阵及其结构奇异值

IF 0.5 Q3 MATHEMATICS
M. Rehman, T. Rasulov, B. Aminov
{"title":"非负数矩阵及其结构奇异值","authors":"M. Rehman, T. Rasulov, B. Aminov","doi":"10.3103/s1066369x23100080","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix <span>\\((M\\vartriangle )\\)</span>. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of <span>\\((M\\vartriangle )\\)</span> is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of <span>\\((M\\vartriangle )\\)</span>, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of <span>\\((M\\vartriangle )\\)</span>.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegative Matrices and Their Structured Singular Values\",\"authors\":\"M. Rehman, T. Rasulov, B. Aminov\",\"doi\":\"10.3103/s1066369x23100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix <span>\\\\((M\\\\vartriangle )\\\\)</span>. The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of <span>\\\\((M\\\\vartriangle )\\\\)</span> is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of <span>\\\\((M\\\\vartriangle )\\\\)</span>, both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of <span>\\\\((M\\\\vartriangle )\\\\)</span>.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23100080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23100080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们提出了计算受纯复扰动的非负矩阵的结构奇异值的新结果。我们证明了结构奇异值和扰动矩阵((M\vartriangle )\)谱半径的等价性。提出并分析了关于结构奇异值、非负谱半径和 \((M\vartriangle )\) 的非负行列式等价性的新结果。此外,我们还证明了对于单位谱半径的 \((M\vartriangle )\), 结构奇异值和谱半径是完全相等的。最后,我们提出了结构奇异值和\( (M (vartriangle )\)的最大奇异值之间的精确等价关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegative Matrices and Their Structured Singular Values

Abstract

In this article, we present new results for the computation of structured singular values of nonnegative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix \((M\vartriangle )\). The presented new results on the equivalence of structured singular values, nonnegative spectral radius and nonnegative determinant of \((M\vartriangle )\) is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of \((M\vartriangle )\), both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of \((M\vartriangle )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信