反铁磁体中超越奈尔矢量近似的相干太赫兹自旋动力学

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-01-09 DOI:10.1063/5.0180888
F. Formisano, T. T. Gareev, D. I. Khusyainov, A. E. Fedianin, R. M. Dubrovin, P. P. Syrnikov, D. Afanasiev, R. V. Pisarev, A. M. Kalashnikova, J. H. Mentink, A. V. Kimel
{"title":"反铁磁体中超越奈尔矢量近似的相干太赫兹自旋动力学","authors":"F. Formisano, T. T. Gareev, D. I. Khusyainov, A. E. Fedianin, R. M. Dubrovin, P. P. Syrnikov, D. Afanasiev, R. V. Pisarev, A. M. Kalashnikova, J. H. Mentink, A. V. Kimel","doi":"10.1063/5.0180888","DOIUrl":null,"url":null,"abstract":"Controlled generation of coherent spin waves with highest possible frequencies and shortest possible wavelengths is a cornerstone of spintronics and magnonics. Here, using Heisenberg antiferromagnet RbMnF3, we demonstrate that laser-induced THz spin dynamics corresponding to pairs of mutually coherent counter-propagating spin waves with the wavevectors up to the edge of the Brillouin zone cannot be understood in terms of magnetization and antiferromagnetic (Néel) vectors, conventionally used to describe spin waves. Instead, we propose to model such spin dynamics using the spin correlation function. We derive a quantum-mechanical equation of motion for the latter and emphasize that unlike the magnetization and antiferromagnetic vectors the spin correlations in antiferromagnets do not exhibit inertia.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent THz spin dynamics in antiferromagnets beyond the approximation of the Néel vector\",\"authors\":\"F. Formisano, T. T. Gareev, D. I. Khusyainov, A. E. Fedianin, R. M. Dubrovin, P. P. Syrnikov, D. Afanasiev, R. V. Pisarev, A. M. Kalashnikova, J. H. Mentink, A. V. Kimel\",\"doi\":\"10.1063/5.0180888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled generation of coherent spin waves with highest possible frequencies and shortest possible wavelengths is a cornerstone of spintronics and magnonics. Here, using Heisenberg antiferromagnet RbMnF3, we demonstrate that laser-induced THz spin dynamics corresponding to pairs of mutually coherent counter-propagating spin waves with the wavevectors up to the edge of the Brillouin zone cannot be understood in terms of magnetization and antiferromagnetic (Néel) vectors, conventionally used to describe spin waves. Instead, we propose to model such spin dynamics using the spin correlation function. We derive a quantum-mechanical equation of motion for the latter and emphasize that unlike the magnetization and antiferromagnetic vectors the spin correlations in antiferromagnets do not exhibit inertia.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0180888\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0180888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受控产生具有最高频率和最短波长的相干自旋波是自旋电子学和磁学的基石。在这里,我们利用海森堡反铁磁体 RbMnF3 证明,激光诱导的太赫兹自旋动力学与一对相互相干的反向传播自旋波相对应,其波向高达布里渊区边缘,这不能用传统上用来描述自旋波的磁化和反铁磁(奈尔)矢量来理解。相反,我们建议使用自旋相关函数来模拟这种自旋动力学。我们推导出了后者的量子力学运动方程,并强调反铁磁体中的自旋相关函数与磁化矢量和反铁磁矢量不同,不会表现出惯性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent THz spin dynamics in antiferromagnets beyond the approximation of the Néel vector
Controlled generation of coherent spin waves with highest possible frequencies and shortest possible wavelengths is a cornerstone of spintronics and magnonics. Here, using Heisenberg antiferromagnet RbMnF3, we demonstrate that laser-induced THz spin dynamics corresponding to pairs of mutually coherent counter-propagating spin waves with the wavevectors up to the edge of the Brillouin zone cannot be understood in terms of magnetization and antiferromagnetic (Néel) vectors, conventionally used to describe spin waves. Instead, we propose to model such spin dynamics using the spin correlation function. We derive a quantum-mechanical equation of motion for the latter and emphasize that unlike the magnetization and antiferromagnetic vectors the spin correlations in antiferromagnets do not exhibit inertia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信