利用联合变量重要性图确定观察研究设计变量的优先次序

IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY
Lauren D. Liao, Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, Samuel D. Pimentel
{"title":"利用联合变量重要性图确定观察研究设计变量的优先次序","authors":"Lauren D. Liao, Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, Samuel D. Pimentel","doi":"10.1080/00031305.2024.2303419","DOIUrl":null,"url":null,"abstract":"Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline varia...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"73 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritizing Variables for Observational Study Design using the Joint Variable Importance Plot\",\"authors\":\"Lauren D. Liao, Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, Samuel D. Pimentel\",\"doi\":\"10.1080/00031305.2024.2303419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline varia...\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2024.2303419\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2024.2303419","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对治疗效果的观察研究需要对混杂变量进行调整。然而,因果推断方法通常无法对所有测量的基线变量进行完美的调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prioritizing Variables for Observational Study Design using the Joint Variable Importance Plot
Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline varia...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信