有向图上多代理寻路的计算复杂性

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bernhard Nebel
{"title":"有向图上多代理寻路的计算复杂性","authors":"Bernhard Nebel","doi":"10.1016/j.artint.2023.104063","DOIUrl":null,"url":null,"abstract":"<div><p><span>While the non-optimizing variant of multi-agent pathfinding on </span>undirected graphs is known to be a polynomial-time problem since almost forty years, a similar result has not been established for directed graphs. In this paper, it will be shown that this problem is NP-complete. For strongly connected directed graphs, however, the problem is polynomial. And both of these results hold even if one allows for synchronous rotations on fully occupied cycles. Interestingly, the results apply also to the so-called graph motion planning feasibility problem on directed graphs.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The computational complexity of multi-agent pathfinding on directed graphs\",\"authors\":\"Bernhard Nebel\",\"doi\":\"10.1016/j.artint.2023.104063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>While the non-optimizing variant of multi-agent pathfinding on </span>undirected graphs is known to be a polynomial-time problem since almost forty years, a similar result has not been established for directed graphs. In this paper, it will be shown that this problem is NP-complete. For strongly connected directed graphs, however, the problem is polynomial. And both of these results hold even if one allows for synchronous rotations on fully occupied cycles. Interestingly, the results apply also to the so-called graph motion planning feasibility problem on directed graphs.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370223002096\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370223002096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,无向图上多代理寻路的非优化变体是一个多项式时间问题,这已经有近四十年的历史了,但对于有向图来说,类似的结果还没有得到证实。本文将证明这个问题是 NP-完全的。然而,对于强连接有向图,该问题是多项式问题。即使允许在完全占据的循环上同步旋转,上述两个结果也都成立。有趣的是,这些结果也适用于有向图上的所谓图运动规划可行性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The computational complexity of multi-agent pathfinding on directed graphs

While the non-optimizing variant of multi-agent pathfinding on undirected graphs is known to be a polynomial-time problem since almost forty years, a similar result has not been established for directed graphs. In this paper, it will be shown that this problem is NP-complete. For strongly connected directed graphs, however, the problem is polynomial. And both of these results hold even if one allows for synchronous rotations on fully occupied cycles. Interestingly, the results apply also to the so-called graph motion planning feasibility problem on directed graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信