标准扬台和横轴上的集值统计等分布

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Robin D.P. Zhou , Sherry H.F. Yan
{"title":"标准扬台和横轴上的集值统计等分布","authors":"Robin D.P. Zhou ,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.aam.2023.102669","DOIUrl":null,"url":null,"abstract":"<div><p><span>As a natural generalization<span> of permutations<span><span>, transversals of </span>Young diagrams play an important role in the study of pattern avoiding permutations. Let </span></span></span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> denote the set of <em>τ</em>-avoiding transversals and <em>τ</em>-avoiding symmetric transversals of a Young diagram <em>λ</em>, respectively. In this paper, we are mainly concerned with the distribution of the peak set and the valley set on standard Young tableaux and pattern avoiding transversals. In particular, we prove that the peak set and the valley set are equidistributed on the standard Young tableaux of shape <span><math><mi>λ</mi><mo>/</mo><mi>μ</mi></math></span> for any skew diagram <span><math><mi>λ</mi><mo>/</mo><mi>μ</mi></math></span><span>. The equidistribution enables us to show that the peak set is equidistributed over </span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo></math></span>) and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo></math></span>) for any Young diagram <em>λ</em> and any permutation <em>τ</em> of <span><math><mo>{</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>+</mo><mi>m</mi><mo>}</mo></math></span> with <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Our results are refinements of the result of Backelin-West-Xin which states that <span><math><mo>|</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo><mo>|</mo></math></span> and the result of Bousquet-Mélou and Steingrímsson which states that <span><math><mo>|</mo><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo><mo>|</mo></math></span>. As applications, we are able to</p><ul><li><span>•</span><span><p>confirm a recent conjecture posed by Yan-Wang-Zhou which asserts that the peak set is equidistributed over <span><math><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi></math></span>-avoiding involutions and <span><math><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi></math></span>-avoiding involutions;</p></span></li><li><span>•</span><span><p>prove that alternating involutions avoiding the pattern <span><math><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi></math></span> are equinumerous with alternating involutions avoiding the pattern <span><math><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi></math></span>, paralleling the result of Backelin-West-Xin for permutations, the result of Bousquet-Mélou and Steingrímsson for involutions, and the result of Yan for alternating permutations.</p></span></li></ul></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equidistribution of set-valued statistics on standard Young tableaux and transversals\",\"authors\":\"Robin D.P. Zhou ,&nbsp;Sherry H.F. Yan\",\"doi\":\"10.1016/j.aam.2023.102669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>As a natural generalization<span> of permutations<span><span>, transversals of </span>Young diagrams play an important role in the study of pattern avoiding permutations. Let </span></span></span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> denote the set of <em>τ</em>-avoiding transversals and <em>τ</em>-avoiding symmetric transversals of a Young diagram <em>λ</em>, respectively. In this paper, we are mainly concerned with the distribution of the peak set and the valley set on standard Young tableaux and pattern avoiding transversals. In particular, we prove that the peak set and the valley set are equidistributed on the standard Young tableaux of shape <span><math><mi>λ</mi><mo>/</mo><mi>μ</mi></math></span> for any skew diagram <span><math><mi>λ</mi><mo>/</mo><mi>μ</mi></math></span><span>. The equidistribution enables us to show that the peak set is equidistributed over </span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo></math></span>) and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo></math></span>) for any Young diagram <em>λ</em> and any permutation <em>τ</em> of <span><math><mo>{</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>+</mo><mi>m</mi><mo>}</mo></math></span> with <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. Our results are refinements of the result of Backelin-West-Xin which states that <span><math><mo>|</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo><mo>|</mo></math></span> and the result of Bousquet-Mélou and Steingrímsson which states that <span><math><mo>|</mo><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><msub><mrow><mi>ST</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi><mo>)</mo><mo>|</mo></math></span>. As applications, we are able to</p><ul><li><span>•</span><span><p>confirm a recent conjecture posed by Yan-Wang-Zhou which asserts that the peak set is equidistributed over <span><math><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi></math></span>-avoiding involutions and <span><math><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi></math></span>-avoiding involutions;</p></span></li><li><span>•</span><span><p>prove that alternating involutions avoiding the pattern <span><math><mn>12</mn><mo>⋯</mo><mi>k</mi><mi>τ</mi></math></span> are equinumerous with alternating involutions avoiding the pattern <span><math><mi>k</mi><mo>⋯</mo><mn>21</mn><mi>τ</mi></math></span>, paralleling the result of Backelin-West-Xin for permutations, the result of Bousquet-Mélou and Steingrímsson for involutions, and the result of Yan for alternating permutations.</p></span></li></ul></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001872\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

作为对排列的自然概括,杨图的横轴在模式避免排列的研究中发挥着重要作用。让 Tλ(τ) 和 STλ(τ) 分别表示杨图 λ 的τ 避开横向和τ 避开对称横向的集合。在本文中,我们主要关注峰集和谷集在标准扬格图和避开图形横截面上的分布。特别是,我们证明了对于任意倾斜图 λ/μ,峰集和谷集在形状为 λ/μ 的标准 Young 台面上是等分布的。等分布使我们能够证明,对于任意杨图 λ 和任意 k,m≥1 的{k+1,k+2,...,k+m}的置换 τ,峰集在 Tλ(12⋯kτ) (或 STλ(12⋯kτ))和 Tλ(k⋯21τ) (或 STλ(k⋯21τ))上等分布。我们的结果是对巴克林-韦斯特-辛(Backelin-West-Xin)的结果||Tλ(12⋯kτ)|=|Tλ(k⋯21τ)|以及布斯凯-梅洛(Bousquet-Mélou)和斯坦因里姆松(Steinrímsson)的结果||STλ(12⋯kτ)|=|STλ(k⋯21τ)|的完善。作为应用,我们能够--证实周彦旺最近提出的一个猜想,即峰值集等分布于 12⋯kτ 避开渐开线和 k⋯21τ 避开渐开线;证明避开 12⋯kτ 图案的交替渐开线与避开 k⋯21τ 图案的交替渐开线数量相等,与巴克林-韦斯特-辛(Backelin-West-Xin)关于排列的结果、布斯凯-梅洛(Bousquet-Mélou)和斯坦因里姆松(Steinrímsson)关于渐开线的结果以及严(Yan)关于交替排列的结果相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equidistribution of set-valued statistics on standard Young tableaux and transversals

As a natural generalization of permutations, transversals of Young diagrams play an important role in the study of pattern avoiding permutations. Let Tλ(τ) and STλ(τ) denote the set of τ-avoiding transversals and τ-avoiding symmetric transversals of a Young diagram λ, respectively. In this paper, we are mainly concerned with the distribution of the peak set and the valley set on standard Young tableaux and pattern avoiding transversals. In particular, we prove that the peak set and the valley set are equidistributed on the standard Young tableaux of shape λ/μ for any skew diagram λ/μ. The equidistribution enables us to show that the peak set is equidistributed over Tλ(12kτ) (resp. STλ(12kτ)) and Tλ(k21τ) (resp. STλ(k21τ)) for any Young diagram λ and any permutation τ of {k+1,k+2,,k+m} with k,m1. Our results are refinements of the result of Backelin-West-Xin which states that |Tλ(12kτ)|=|Tλ(k21τ)| and the result of Bousquet-Mélou and Steingrímsson which states that |STλ(12kτ)|=|STλ(k21τ)|. As applications, we are able to

  • confirm a recent conjecture posed by Yan-Wang-Zhou which asserts that the peak set is equidistributed over 12kτ-avoiding involutions and k21τ-avoiding involutions;

  • prove that alternating involutions avoiding the pattern 12kτ are equinumerous with alternating involutions avoiding the pattern k21τ, paralleling the result of Backelin-West-Xin for permutations, the result of Bousquet-Mélou and Steingrímsson for involutions, and the result of Yan for alternating permutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信