Liudmila V Stelmakh, Raisa R Sagadatova, Olga S Alatartseva
{"title":"病毒感染对黑海微藻 Tetraselmis viridis 的影响:营养物质和铜离子的作用。","authors":"Liudmila V Stelmakh, Raisa R Sagadatova, Olga S Alatartseva","doi":"10.1071/FP23114","DOIUrl":null,"url":null,"abstract":"<p><p>The TvV-SM2 virus, isolated from the coastal waters of the Black Sea, causes lysis of its host, the algae Tetraselmis viridis (Chlorophyta). Under optimal conditions for nutrients, an increase in the initial abundance of algae cells by four times caused a 3-fold reduction in the latent period of viral infection. During the period of the most rapid cell lysis of T. viridis , nitrogen deficiency leads to a decrease in the average daily rate of death of cells affected by the virus by 3.2times relative to the replete conditions, while in the case of phosphorus deficiency, this process slows down by up to 2.4times. Under deplete conditions, the rate of cell death was only 34% lower than under replete conditions. The effect of copper ions (100μgL-1 ) on the viral suspension for 6h led to the complete suppression of its activity. In the presence of the host of this virus, its activity is only partially suppressed. As a result, cell lysis under the influence of a viral infection occurred in two stages. The first stage was noted only during the first 6h of the experiment. The second main stage took place within 78-170h. This study showed that in conditions of nutrient deficiency and in the presence of copper ions in seawater, the impact of viruses on microalgae will be weaker.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of viral infection on the Black Sea microalgae <i>Tetraselmis viridis</i>: the role of nutrients and copper ions.\",\"authors\":\"Liudmila V Stelmakh, Raisa R Sagadatova, Olga S Alatartseva\",\"doi\":\"10.1071/FP23114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The TvV-SM2 virus, isolated from the coastal waters of the Black Sea, causes lysis of its host, the algae Tetraselmis viridis (Chlorophyta). Under optimal conditions for nutrients, an increase in the initial abundance of algae cells by four times caused a 3-fold reduction in the latent period of viral infection. During the period of the most rapid cell lysis of T. viridis , nitrogen deficiency leads to a decrease in the average daily rate of death of cells affected by the virus by 3.2times relative to the replete conditions, while in the case of phosphorus deficiency, this process slows down by up to 2.4times. Under deplete conditions, the rate of cell death was only 34% lower than under replete conditions. The effect of copper ions (100μgL-1 ) on the viral suspension for 6h led to the complete suppression of its activity. In the presence of the host of this virus, its activity is only partially suppressed. As a result, cell lysis under the influence of a viral infection occurred in two stages. The first stage was noted only during the first 6h of the experiment. The second main stage took place within 78-170h. This study showed that in conditions of nutrient deficiency and in the presence of copper ions in seawater, the impact of viruses on microalgae will be weaker.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23114\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23114","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The effect of viral infection on the Black Sea microalgae Tetraselmis viridis: the role of nutrients and copper ions.
The TvV-SM2 virus, isolated from the coastal waters of the Black Sea, causes lysis of its host, the algae Tetraselmis viridis (Chlorophyta). Under optimal conditions for nutrients, an increase in the initial abundance of algae cells by four times caused a 3-fold reduction in the latent period of viral infection. During the period of the most rapid cell lysis of T. viridis , nitrogen deficiency leads to a decrease in the average daily rate of death of cells affected by the virus by 3.2times relative to the replete conditions, while in the case of phosphorus deficiency, this process slows down by up to 2.4times. Under deplete conditions, the rate of cell death was only 34% lower than under replete conditions. The effect of copper ions (100μgL-1 ) on the viral suspension for 6h led to the complete suppression of its activity. In the presence of the host of this virus, its activity is only partially suppressed. As a result, cell lysis under the influence of a viral infection occurred in two stages. The first stage was noted only during the first 6h of the experiment. The second main stage took place within 78-170h. This study showed that in conditions of nutrient deficiency and in the presence of copper ions in seawater, the impact of viruses on microalgae will be weaker.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.