Soledad Bárez-López, Paul Bishop, Daniel Searby, David Murphy, Michael P. Greenwood
{"title":"雄性大鼠下丘脑视网膜外光感受器 Opsin3 对渗透刺激和光敏感。","authors":"Soledad Bárez-López, Paul Bishop, Daniel Searby, David Murphy, Michael P. Greenwood","doi":"10.1111/jne.13363","DOIUrl":null,"url":null,"abstract":"<p>The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since <i>Opn3</i> encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of <i>Opn3</i> in these nuclei. We have demonstrated that <i>Opn3</i> is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that <i>Opn3</i> increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":"36 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13363","citationCount":"0","resultStr":"{\"title\":\"Male rat hypothalamic extraretinal photoreceptor Opsin3 is sensitive to osmotic stimuli and light\",\"authors\":\"Soledad Bárez-López, Paul Bishop, Daniel Searby, David Murphy, Michael P. Greenwood\",\"doi\":\"10.1111/jne.13363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since <i>Opn3</i> encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of <i>Opn3</i> in these nuclei. We have demonstrated that <i>Opn3</i> is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that <i>Opn3</i> increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13363\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jne.13363\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13363","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Male rat hypothalamic extraretinal photoreceptor Opsin3 is sensitive to osmotic stimuli and light
The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since Opn3 encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of Opn3 in these nuclei. We have demonstrated that Opn3 is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that Opn3 increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.