{"title":"WIV,一种存在于多种节肢动物病毒中的蛋白质结构域,可能有助于病毒感染。","authors":"David G Karlin","doi":"10.1099/jgv.0.001948","DOIUrl":null,"url":null,"abstract":"<p><p>The most powerful approach to detect distant homologues of a protein is based on structure prediction and comparison. Yet this approach is still inapplicable to many viral proteins. Therefore, we applied a powerful sequence-based procedure to identify distant homologues of viral proteins. It relies on three principles: (1) traces of sequence similarity can persist beyond the significance cutoff of homology detection programmes; (2) candidate homologues can be identified among proteins with weak sequence similarity to the query by using 'contextual' information, e.g. taxonomy or type of host infected; (3) these candidate homologues can be validated using highly sensitive profile-profile comparison. As a test case, this approach was applied to a protein without known homologues, encoded by ORF4 of Lake Sinai viruses (which infect bees). We discovered that the ORF4 protein contains a domain that has homologues in proteins from >20 taxa of viruses infecting arthropods. We called this domain 'widespread, intriguing, versatile' (WIV), because it is found in proteins with a wide variety of functions and within varied domain contexts. For example, WIV is found in the NSs protein of tospoviruses, a global threat to food security, which infect plants as well as their arthropod vectors; in the RNA2 ORF1-encoded protein of chronic bee paralysis virus, a widespread virus of bees; and in various proteins of cypoviruses, which infect the silkworm <i>Bombyx mori</i>. Structural modelling with AlphaFold indicated that the WIV domain has a previously unknown fold, and bibliographical evidence suggests that it facilitates infection of arthropods.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WIV, a protein domain found in a wide number of arthropod viruses, which probably facilitates infection.\",\"authors\":\"David G Karlin\",\"doi\":\"10.1099/jgv.0.001948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most powerful approach to detect distant homologues of a protein is based on structure prediction and comparison. Yet this approach is still inapplicable to many viral proteins. Therefore, we applied a powerful sequence-based procedure to identify distant homologues of viral proteins. It relies on three principles: (1) traces of sequence similarity can persist beyond the significance cutoff of homology detection programmes; (2) candidate homologues can be identified among proteins with weak sequence similarity to the query by using 'contextual' information, e.g. taxonomy or type of host infected; (3) these candidate homologues can be validated using highly sensitive profile-profile comparison. As a test case, this approach was applied to a protein without known homologues, encoded by ORF4 of Lake Sinai viruses (which infect bees). We discovered that the ORF4 protein contains a domain that has homologues in proteins from >20 taxa of viruses infecting arthropods. We called this domain 'widespread, intriguing, versatile' (WIV), because it is found in proteins with a wide variety of functions and within varied domain contexts. For example, WIV is found in the NSs protein of tospoviruses, a global threat to food security, which infect plants as well as their arthropod vectors; in the RNA2 ORF1-encoded protein of chronic bee paralysis virus, a widespread virus of bees; and in various proteins of cypoviruses, which infect the silkworm <i>Bombyx mori</i>. Structural modelling with AlphaFold indicated that the WIV domain has a previously unknown fold, and bibliographical evidence suggests that it facilitates infection of arthropods.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.001948\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.001948","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
WIV, a protein domain found in a wide number of arthropod viruses, which probably facilitates infection.
The most powerful approach to detect distant homologues of a protein is based on structure prediction and comparison. Yet this approach is still inapplicable to many viral proteins. Therefore, we applied a powerful sequence-based procedure to identify distant homologues of viral proteins. It relies on three principles: (1) traces of sequence similarity can persist beyond the significance cutoff of homology detection programmes; (2) candidate homologues can be identified among proteins with weak sequence similarity to the query by using 'contextual' information, e.g. taxonomy or type of host infected; (3) these candidate homologues can be validated using highly sensitive profile-profile comparison. As a test case, this approach was applied to a protein without known homologues, encoded by ORF4 of Lake Sinai viruses (which infect bees). We discovered that the ORF4 protein contains a domain that has homologues in proteins from >20 taxa of viruses infecting arthropods. We called this domain 'widespread, intriguing, versatile' (WIV), because it is found in proteins with a wide variety of functions and within varied domain contexts. For example, WIV is found in the NSs protein of tospoviruses, a global threat to food security, which infect plants as well as their arthropod vectors; in the RNA2 ORF1-encoded protein of chronic bee paralysis virus, a widespread virus of bees; and in various proteins of cypoviruses, which infect the silkworm Bombyx mori. Structural modelling with AlphaFold indicated that the WIV domain has a previously unknown fold, and bibliographical evidence suggests that it facilitates infection of arthropods.
期刊介绍:
JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.