Coen Hird, Emer Flanagan, Craig E. Franklin, Rebecca L. Cramp
{"title":"寒冷引起的皮肤变黑并不能保护两栖类幼虫免受紫外线相关的 DNA 损伤。","authors":"Coen Hird, Emer Flanagan, Craig E. Franklin, Rebecca L. Cramp","doi":"10.1002/jez.2780","DOIUrl":null,"url":null,"abstract":"<p>Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared <i>Limnodynastes peronii</i> larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm<sup>−2</sup>) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in <i>L. peronii</i> larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2780","citationCount":"0","resultStr":"{\"title\":\"Cold-induced skin darkening does not protect amphibian larvae from UV-associated DNA damage\",\"authors\":\"Coen Hird, Emer Flanagan, Craig E. Franklin, Rebecca L. Cramp\",\"doi\":\"10.1002/jez.2780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared <i>Limnodynastes peronii</i> larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm<sup>−2</sup>) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in <i>L. peronii</i> larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2780\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.2780\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2780","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
两栖动物的减少有时与紫外线辐射(UVR)水平的增加有关。两栖动物数量减少通常与疾病有关,但温度和紫外线辐射等环境因素在疾病流行病学中也发挥着重要作用。紫外线辐射对两栖动物的诱变作用在低温环境下更为严重。来自寒冷环境的两栖动物可能更容易受到紫外线辐射增加的影响。然而,某些物种的幼虫具有低温适应能力,可在低温下减少紫外线引起的 DNA 损伤。目前还缺乏对这种反应机制的了解。我们在凉爽(15°C)或温暖(25°C)的水域中饲养鲈形目幼体,然后将其急性暴露于 1.5 小时的高强度(80 µW cm-2 )紫外线辐射下。我们测量了幼虫的颜色和 DNA 修复酶的 mRNA 水平。我们在25°C条件下将幼虫饲养在黑色或白色容器中,以引起皮肤颜色反应,然后测量暴露于UVBR后皮肤和剩余躯体中的DNA损伤水平。与温暖气候下的幼虫相比,寒冷气候下的幼虫肤色更深,DNA损伤程度更低。冷气候和暖气候幼虫的 CPD-光解酶 mRNA 水平没有差异。幼虫皮肤变黑并不能减少它们在紫外线照射下的DNA损伤积累。我们的研究结果表明,皮肤变黑并不能解释冷诱导的紫外线相关DNA损伤的减少。有益的低温适应更可能是由于 CPD-光解酶丰度的增加和/或低温下光解酶活性的提高。
Cold-induced skin darkening does not protect amphibian larvae from UV-associated DNA damage
Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared Limnodynastes peronii larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm−2) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in L. peronii larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.