砷暴露对心血管的不良影响和机理认识:综述

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yán Wāng, Ling Ma, Chunzhi Wang, Tiantian Gao, Yapeng Han, De-Xiang Xu
{"title":"砷暴露对心血管的不良影响和机理认识:综述","authors":"Yán Wāng,&nbsp;Ling Ma,&nbsp;Chunzhi Wang,&nbsp;Tiantian Gao,&nbsp;Yapeng Han,&nbsp;De-Xiang Xu","doi":"10.1007/s10311-023-01677-0","DOIUrl":null,"url":null,"abstract":"<div><p>Human exposure to environmental arsenic induces cardiovascular diseases such as arrhythmias, hypertension, and arteriosclerosis. Here, we review the toxicological and cardiovascular impacts of arsenic in in vitro cardiac and vascular models. The mechanism of arsenic-induced cardiovascular impairments includes oxidative stress, epigenetic modifications, chromatin instability, subcellular damage, and premature aging. The different types of cardiac and vascular cells exhibit distinct responses to arsenic exposure. Arsenic causes arrhythmias, which involve alteration of cardiomyocyte potassium channels and, in turn, repolarization issues. This is mainly due to redox signals that cause epigenetic modifications of potassium channels. On the other hand, vascular lesions, such as damage to blood vessels, occur mainly due to an imbalance in redox levels. This imbalance leads to premature senescence of cells and stop the cell cycle. Furthermore, intracellular accumulation of calcium and ferrous ions plays a major role in arsenic-induced vascular cell apoptosis and cardiomyocyte ferroptosis, respectively.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 3","pages":"1437 - 1472"},"PeriodicalIF":15.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiovascular adverse effects and mechanistic insights of arsenic exposure: a review\",\"authors\":\"Yán Wāng,&nbsp;Ling Ma,&nbsp;Chunzhi Wang,&nbsp;Tiantian Gao,&nbsp;Yapeng Han,&nbsp;De-Xiang Xu\",\"doi\":\"10.1007/s10311-023-01677-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human exposure to environmental arsenic induces cardiovascular diseases such as arrhythmias, hypertension, and arteriosclerosis. Here, we review the toxicological and cardiovascular impacts of arsenic in in vitro cardiac and vascular models. The mechanism of arsenic-induced cardiovascular impairments includes oxidative stress, epigenetic modifications, chromatin instability, subcellular damage, and premature aging. The different types of cardiac and vascular cells exhibit distinct responses to arsenic exposure. Arsenic causes arrhythmias, which involve alteration of cardiomyocyte potassium channels and, in turn, repolarization issues. This is mainly due to redox signals that cause epigenetic modifications of potassium channels. On the other hand, vascular lesions, such as damage to blood vessels, occur mainly due to an imbalance in redox levels. This imbalance leads to premature senescence of cells and stop the cell cycle. Furthermore, intracellular accumulation of calcium and ferrous ions plays a major role in arsenic-induced vascular cell apoptosis and cardiomyocyte ferroptosis, respectively.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 3\",\"pages\":\"1437 - 1472\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-023-01677-0\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-023-01677-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人类接触环境中的砷会诱发心血管疾病,如心律失常、高血压和动脉硬化。在此,我们回顾了砷在体外心脏和血管模型中的毒理学和心血管影响。砷诱发心血管损伤的机制包括氧化应激、表观遗传修饰、染色质不稳定性、亚细胞损伤和早衰。不同类型的心脏和血管细胞对砷暴露表现出不同的反应。砷会导致心律失常,这涉及心肌细胞钾离子通道的改变,进而导致再极化问题。这主要是由于氧化还原信号导致钾通道的表观遗传学改变。另一方面,血管病变,如血管损伤,主要是由于氧化还原水平失衡造成的。这种失衡导致细胞过早衰老并停止细胞周期。此外,细胞内钙离子和亚铁离子的积累分别在砷诱导的血管细胞凋亡和心肌细胞铁凋亡中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cardiovascular adverse effects and mechanistic insights of arsenic exposure: a review

Cardiovascular adverse effects and mechanistic insights of arsenic exposure: a review

Human exposure to environmental arsenic induces cardiovascular diseases such as arrhythmias, hypertension, and arteriosclerosis. Here, we review the toxicological and cardiovascular impacts of arsenic in in vitro cardiac and vascular models. The mechanism of arsenic-induced cardiovascular impairments includes oxidative stress, epigenetic modifications, chromatin instability, subcellular damage, and premature aging. The different types of cardiac and vascular cells exhibit distinct responses to arsenic exposure. Arsenic causes arrhythmias, which involve alteration of cardiomyocyte potassium channels and, in turn, repolarization issues. This is mainly due to redox signals that cause epigenetic modifications of potassium channels. On the other hand, vascular lesions, such as damage to blood vessels, occur mainly due to an imbalance in redox levels. This imbalance leads to premature senescence of cells and stop the cell cycle. Furthermore, intracellular accumulation of calcium and ferrous ions plays a major role in arsenic-induced vascular cell apoptosis and cardiomyocyte ferroptosis, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信