对称群的超收缩性

IF 1.2 2区 数学 Q1 MATHEMATICS
Yuval Filmus, Guy Kindler, Noam Lifshitz, Dor Minzer
{"title":"对称群的超收缩性","authors":"Yuval Filmus, Guy Kindler, Noam Lifshitz, Dor Minzer","doi":"10.1017/fms.2023.118","DOIUrl":null,"url":null,"abstract":"<p>The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.</p><p>We consider the symmetric group, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span>, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of <span>global functions</span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span>, which are functions whose <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-norm remains small when restricting <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$O(1)$</span></span></img></span></span> coordinates of the input, and assert that low-degree, global functions have small <span>q</span>-norms, for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$q&gt;2$</span></span></img></span></span>.</p><p>As applications, we show the following: </p><ol><li><p><span>1.</span> An analog of the level-<span>d</span> inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$A_n$</span></span></img></span></span>.</p></li><li><p><span>2.</span> Isoperimetric inequalities on the transposition Cayley graph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span> for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.</p></li><li><p><span>3.</span> Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.</p></li></ol><p></p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercontractivity on the symmetric group\",\"authors\":\"Yuval Filmus, Guy Kindler, Noam Lifshitz, Dor Minzer\",\"doi\":\"10.1017/fms.2023.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.</p><p>We consider the symmetric group, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_n$</span></span></img></span></span>, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of <span>global functions</span> on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_n$</span></span></img></span></span>, which are functions whose <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-norm remains small when restricting <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$O(1)$</span></span></img></span></span> coordinates of the input, and assert that low-degree, global functions have small <span>q</span>-norms, for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$q&gt;2$</span></span></img></span></span>.</p><p>As applications, we show the following: </p><ol><li><p><span>1.</span> An analog of the level-<span>d</span> inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A_n$</span></span></img></span></span>.</p></li><li><p><span>2.</span> Isoperimetric inequalities on the transposition Cayley graph of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105121623186-0467:S2050509423001184:S2050509423001184_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S_n$</span></span></img></span></span> for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.</p></li><li><p><span>3.</span> Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.</p></li></ol><p></p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.118\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

超收缩不等式是分析学中的一个基本结果,在离散数学、理论计算机科学、组合学等领域有许多应用。迄今为止,这一不等式的变体主要是针对乘积空间证明的,这就提出了一个问题:类似的结果是否适用于非乘积域。我们考虑了对称群 $S_n$,这是最基本的非乘积域之一,并在其上建立了超契约不等式。我们的不等式对 $S_n$ 上的全局函数类最有效,全局函数是指当限制输入的 $O(1)$ 坐标时,其 $2$ 准则仍然很小的函数,并断言低度全局函数在 $q>2$ 时具有很小的 q 准则:1.超立方体上的等差数列不等式,断言低度全局函数的质量非常小。我们还展示了如何利用这个不等式来约束交替群 $A_n$ 中全局无积集的大小。在全局函数 $S_n$ 的转置 Cayley 图上的等周不等式,它类似于 KKL 定理和布尔超立方体中的小集扩展性质。 3. 在参数的某些情况下,克鲁斯卡尔-卡托纳定理的多片和稳定版本的超收缩不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypercontractivity on the symmetric group

The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.

We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of global functions on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small q-norms, for $q>2$.

As applications, we show the following:

  1. 1. An analog of the level-d inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$.

  2. 2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.

  3. 3. Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信