Dr. Kundan Sagar, Michael Kim, Dr. Tong Wu, Shuming Zhang, Dr. Emile L. Bominaar, Dr. Maxime A. Siegler, Dr. Michael Hendrich, Dr. Isaac Garcia-Bosch
{"title":"用单核铜配合物模拟 LPMOs 的反应活性","authors":"Dr. Kundan Sagar, Michael Kim, Dr. Tong Wu, Shuming Zhang, Dr. Emile L. Bominaar, Dr. Maxime A. Siegler, Dr. Michael Hendrich, Dr. Isaac Garcia-Bosch","doi":"10.1002/ejic.202300774","DOIUrl":null,"url":null,"abstract":"<p>Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C−H bonds in polysaccharides using O<sub>2</sub> or H<sub>2</sub>O<sub>2</sub> as oxidants (monooxygenase/peroxygenase). In the absence of C−H substrate, LPMOs reduce O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> (oxidase) and H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might accept and donate protons and/or electrons during O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH<sub>2</sub>) to analyze the reactivity of mononuclear Cu species towards O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>. [(LH<sub>2</sub>)Cu<sup>I</sup>]<sup>1+</sup> (<b>1</b>), [(LH<sub>2</sub>)Cu<sup>II</sup>]<sup>2+</sup> (<b>2</b>), [(LH<sup>−</sup>)Cu<sup>II</sup>]<sup>1+</sup> (<b>3</b>), [(LH<sub>2</sub>)Cu<sup>II</sup>(OH)]<sup>1+</sup> (<b>4</b>), and [(LH<sub>2</sub>)Cu<sup>II</sup>(OOH)]<sup>1+</sup> (<b>5</b>) were synthesized and characterized by structural and spectroscopic means. Complex <b>1</b> reacts with O<sub>2</sub> to produce <b>5</b>, which releases H<sub>2</sub>O<sub>2</sub> to generate <b>3</b>, suggesting that O<sub>2</sub> is used by LPMOs to generate H<sub>2</sub>O<sub>2</sub>. The reaction of <b>1</b> with H<sub>2</sub>O<sub>2</sub> produces <b>4</b> and hydroxyl radical, which reacts with C−H substrates in a Fenton-like fashion. Complex <b>3</b>, which can generate <b>1</b> via a reversible protonation/reduction, binds H<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub> to produce <b>4</b> and <b>5</b>, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 15","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex\",\"authors\":\"Dr. Kundan Sagar, Michael Kim, Dr. Tong Wu, Shuming Zhang, Dr. Emile L. Bominaar, Dr. Maxime A. Siegler, Dr. Michael Hendrich, Dr. Isaac Garcia-Bosch\",\"doi\":\"10.1002/ejic.202300774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C−H bonds in polysaccharides using O<sub>2</sub> or H<sub>2</sub>O<sub>2</sub> as oxidants (monooxygenase/peroxygenase). In the absence of C−H substrate, LPMOs reduce O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> (oxidase) and H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might accept and donate protons and/or electrons during O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH<sub>2</sub>) to analyze the reactivity of mononuclear Cu species towards O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>. [(LH<sub>2</sub>)Cu<sup>I</sup>]<sup>1+</sup> (<b>1</b>), [(LH<sub>2</sub>)Cu<sup>II</sup>]<sup>2+</sup> (<b>2</b>), [(LH<sup>−</sup>)Cu<sup>II</sup>]<sup>1+</sup> (<b>3</b>), [(LH<sub>2</sub>)Cu<sup>II</sup>(OH)]<sup>1+</sup> (<b>4</b>), and [(LH<sub>2</sub>)Cu<sup>II</sup>(OOH)]<sup>1+</sup> (<b>5</b>) were synthesized and characterized by structural and spectroscopic means. Complex <b>1</b> reacts with O<sub>2</sub> to produce <b>5</b>, which releases H<sub>2</sub>O<sub>2</sub> to generate <b>3</b>, suggesting that O<sub>2</sub> is used by LPMOs to generate H<sub>2</sub>O<sub>2</sub>. The reaction of <b>1</b> with H<sub>2</sub>O<sub>2</sub> produces <b>4</b> and hydroxyl radical, which reacts with C−H substrates in a Fenton-like fashion. Complex <b>3</b>, which can generate <b>1</b> via a reversible protonation/reduction, binds H<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub> to produce <b>4</b> and <b>5</b>, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.</p>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":\"27 15\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202300774\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202300774","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex
Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C−H bonds in polysaccharides using O2 or H2O2 as oxidants (monooxygenase/peroxygenase). In the absence of C−H substrate, LPMOs reduce O2 to H2O2 (oxidase) and H2O2 to H2O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might accept and donate protons and/or electrons during O2 and H2O2 reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH2) to analyze the reactivity of mononuclear Cu species towards O2 and H2O2. [(LH2)CuI]1+ (1), [(LH2)CuII]2+ (2), [(LH−)CuII]1+ (3), [(LH2)CuII(OH)]1+ (4), and [(LH2)CuII(OOH)]1+ (5) were synthesized and characterized by structural and spectroscopic means. Complex 1 reacts with O2 to produce 5, which releases H2O2 to generate 3, suggesting that O2 is used by LPMOs to generate H2O2. The reaction of 1 with H2O2 produces 4 and hydroxyl radical, which reacts with C−H substrates in a Fenton-like fashion. Complex 3, which can generate 1 via a reversible protonation/reduction, binds H2O and H2O2 to produce 4 and 5, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.