Ingrid Bejarano-Arias, Carole Nehme, Sebastian Breitenbach, Hanno Meyer, S. Modestou, D. Mouralis
{"title":"考蒙洞穴和采石场系统(法国北部)的气候监测显示碳酸盐沉积接近氧同位素平衡条件","authors":"Ingrid Bejarano-Arias, Carole Nehme, Sebastian Breitenbach, Hanno Meyer, S. Modestou, D. Mouralis","doi":"10.5038/1827-806x.53.1.2482","DOIUrl":null,"url":null,"abstract":"The study of modern cave deposits forming under near isotopic equilibrium conditions can potentially help disentangle the processes influencing the oxygen isotope system and suitability of stalagmites as archives of past hydrological or thermal changes. We used cave monitoring to evaluate the impact of kinetic isotope fractionation and assess the conditions under which modern cave carbonates form in the Caumont cave and quarry system, located in Normandy, northwest France. Over 20 months, we collected climatological data, dripwater, and modern carbonate samples at 2–4-week intervals at three different stations inside the Caumont cave and quarry system. We find highly stable (10.4 ± 0.3°C – 11.3 ± 0.1°C) temperature in the deeper sections of the Caumont cave and quarry system. The temporal dynamics of δ18Odrip indicates that the drip water composition in Caumont reflects the original (though subdued) signal of precipitation, rather than the impact the seasonal to interannual cave air temperature has on isotopic fractionation. The monitoring reveals that δ13C of modern carbonate is influenced by prior carbonate precipitation that occurs during the summer season when evapotranspiration can minimize effective infiltration. Comparison of δ18O from dripwater and modern calcite, precipitated on glass plates and collected every two to four weeks, reveals that modern calcite forms near oxygen isotope equilibrium. A Hendy test on modern carbonate deposited on a stalagmite-shaped glass flask over 20 months confirms this finding because neither does δ13C increase with distance from the apex, nor are δ13C and δ18O positively correlated. We conclude that the δ13C signal in speleothems reflect summer (and longer-term) prior carbonate precipitation in response to effective infiltration dynamics, and that the δ18O signal likely reflects annual to multi-annual changes in the composition of precipitation above the cave.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate monitoring in the Caumont cave and quarry system (northern France) reveal near oxygen isotopic equilibrium conditions for carbonate deposition\",\"authors\":\"Ingrid Bejarano-Arias, Carole Nehme, Sebastian Breitenbach, Hanno Meyer, S. Modestou, D. Mouralis\",\"doi\":\"10.5038/1827-806x.53.1.2482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of modern cave deposits forming under near isotopic equilibrium conditions can potentially help disentangle the processes influencing the oxygen isotope system and suitability of stalagmites as archives of past hydrological or thermal changes. We used cave monitoring to evaluate the impact of kinetic isotope fractionation and assess the conditions under which modern cave carbonates form in the Caumont cave and quarry system, located in Normandy, northwest France. Over 20 months, we collected climatological data, dripwater, and modern carbonate samples at 2–4-week intervals at three different stations inside the Caumont cave and quarry system. We find highly stable (10.4 ± 0.3°C – 11.3 ± 0.1°C) temperature in the deeper sections of the Caumont cave and quarry system. The temporal dynamics of δ18Odrip indicates that the drip water composition in Caumont reflects the original (though subdued) signal of precipitation, rather than the impact the seasonal to interannual cave air temperature has on isotopic fractionation. The monitoring reveals that δ13C of modern carbonate is influenced by prior carbonate precipitation that occurs during the summer season when evapotranspiration can minimize effective infiltration. Comparison of δ18O from dripwater and modern calcite, precipitated on glass plates and collected every two to four weeks, reveals that modern calcite forms near oxygen isotope equilibrium. A Hendy test on modern carbonate deposited on a stalagmite-shaped glass flask over 20 months confirms this finding because neither does δ13C increase with distance from the apex, nor are δ13C and δ18O positively correlated. We conclude that the δ13C signal in speleothems reflect summer (and longer-term) prior carbonate precipitation in response to effective infiltration dynamics, and that the δ18O signal likely reflects annual to multi-annual changes in the composition of precipitation above the cave.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5038/1827-806x.53.1.2482\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5038/1827-806x.53.1.2482","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate monitoring in the Caumont cave and quarry system (northern France) reveal near oxygen isotopic equilibrium conditions for carbonate deposition
The study of modern cave deposits forming under near isotopic equilibrium conditions can potentially help disentangle the processes influencing the oxygen isotope system and suitability of stalagmites as archives of past hydrological or thermal changes. We used cave monitoring to evaluate the impact of kinetic isotope fractionation and assess the conditions under which modern cave carbonates form in the Caumont cave and quarry system, located in Normandy, northwest France. Over 20 months, we collected climatological data, dripwater, and modern carbonate samples at 2–4-week intervals at three different stations inside the Caumont cave and quarry system. We find highly stable (10.4 ± 0.3°C – 11.3 ± 0.1°C) temperature in the deeper sections of the Caumont cave and quarry system. The temporal dynamics of δ18Odrip indicates that the drip water composition in Caumont reflects the original (though subdued) signal of precipitation, rather than the impact the seasonal to interannual cave air temperature has on isotopic fractionation. The monitoring reveals that δ13C of modern carbonate is influenced by prior carbonate precipitation that occurs during the summer season when evapotranspiration can minimize effective infiltration. Comparison of δ18O from dripwater and modern calcite, precipitated on glass plates and collected every two to four weeks, reveals that modern calcite forms near oxygen isotope equilibrium. A Hendy test on modern carbonate deposited on a stalagmite-shaped glass flask over 20 months confirms this finding because neither does δ13C increase with distance from the apex, nor are δ13C and δ18O positively correlated. We conclude that the δ13C signal in speleothems reflect summer (and longer-term) prior carbonate precipitation in response to effective infiltration dynamics, and that the δ18O signal likely reflects annual to multi-annual changes in the composition of precipitation above the cave.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.