四边盖驱动方形空腔中 MHD 混合对流条件下的传热和传质

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-01-02 DOI:10.1002/htj.22993
Arvind Patel, Manoj Kumar, Shobha Bagai
{"title":"四边盖驱动方形空腔中 MHD 混合对流条件下的传热和传质","authors":"Arvind Patel,&nbsp;Manoj Kumar,&nbsp;Shobha Bagai","doi":"10.1002/htj.22993","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the heat and mass transfer under magnetohydrodynamic mixed convection flow of a binary gas mixture in a four-sided lid-driven square cavity. The enclosure's left wall is sinusoidally heated and acts as a source term, while the right wall functions as a sink. The cavity's horizontal walls are adiabatic and impermeable to mass transfer. The governing equations under Boussinesq approximation and stream function-vorticity formulation are solved using the alternating-direction-implicit scheme, a finite-difference method. The numerical scheme's consistency and stability are demonstrated using the matrix method. The MATLAB code is written, validated against some existing studies, and used to perform numerical simulations. The numerical solutions are graphically examined by visualizing the streamline, isotherm, and concentration contours for nondimensional parameters, such as Hartmann number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>H</mi>\n \n <mi>a</mi>\n \n <mo>≤</mo>\n \n <mn>100</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(0\\le Ha\\le 100)$</annotation>\n </semantics></math>, heat absorption or generation coefficient <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>−</mo>\n \n <mn>2</mn>\n \n <mo>≤</mo>\n \n <mi>ϕ</mi>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(-2\\le \\phi \\le 2)$</annotation>\n </semantics></math>, Richardson number <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>0.01</mn>\n \n <mo>≤</mo>\n \n <mi>R</mi>\n \n <mi>i</mi>\n \n <mo>≤</mo>\n \n <mn>100</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(0.01\\le Ri\\le 100)$</annotation>\n </semantics></math>, and buoyancy ratio <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mo>−</mo>\n \n <mn>6</mn>\n \n <mo>≤</mo>\n \n <mi>N</mi>\n \n <mo>≤</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(-6\\le N\\le 6)$</annotation>\n </semantics></math>. The magnetic field modifies the temperature and concentration distribution in the cavity, depending on the convection mode. The magnetic field forces the fluid to stagnate in different regions of the cavity, depending on the mode of convection. It was found that the difference between the maximum and minimum temperature and concentration at the cavity's midpoint increases up to 13 and 10 times, respectively, in the natural convection compared with the forced convection. The average Nusselt number on the vertical walls of the cavity is maximum in natural convection in the absence of a magnetic field but reaches a minimum value at <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mi>a</mi>\n \n <mo>=</mo>\n \n <mn>100</mn>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $Ha=100$</annotation>\n </semantics></math> in forced and mixed convection. The average Sherwood number on the cavity's vertical walls decreases with the magnetic field in mixed and natural convection.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat and mass transfer under MHD mixed convection in a four-sided lid-driven square cavity\",\"authors\":\"Arvind Patel,&nbsp;Manoj Kumar,&nbsp;Shobha Bagai\",\"doi\":\"10.1002/htj.22993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the heat and mass transfer under magnetohydrodynamic mixed convection flow of a binary gas mixture in a four-sided lid-driven square cavity. The enclosure's left wall is sinusoidally heated and acts as a source term, while the right wall functions as a sink. The cavity's horizontal walls are adiabatic and impermeable to mass transfer. The governing equations under Boussinesq approximation and stream function-vorticity formulation are solved using the alternating-direction-implicit scheme, a finite-difference method. The numerical scheme's consistency and stability are demonstrated using the matrix method. The MATLAB code is written, validated against some existing studies, and used to perform numerical simulations. The numerical solutions are graphically examined by visualizing the streamline, isotherm, and concentration contours for nondimensional parameters, such as Hartmann number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>H</mi>\\n \\n <mi>a</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>100</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(0\\\\le Ha\\\\le 100)$</annotation>\\n </semantics></math>, heat absorption or generation coefficient <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mo>−</mo>\\n \\n <mn>2</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>ϕ</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(-2\\\\le \\\\phi \\\\le 2)$</annotation>\\n </semantics></math>, Richardson number <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>0.01</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>R</mi>\\n \\n <mi>i</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>100</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(0.01\\\\le Ri\\\\le 100)$</annotation>\\n </semantics></math>, and buoyancy ratio <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mo>−</mo>\\n \\n <mn>6</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>N</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(-6\\\\le N\\\\le 6)$</annotation>\\n </semantics></math>. The magnetic field modifies the temperature and concentration distribution in the cavity, depending on the convection mode. The magnetic field forces the fluid to stagnate in different regions of the cavity, depending on the mode of convection. It was found that the difference between the maximum and minimum temperature and concentration at the cavity's midpoint increases up to 13 and 10 times, respectively, in the natural convection compared with the forced convection. The average Nusselt number on the vertical walls of the cavity is maximum in natural convection in the absence of a magnetic field but reaches a minimum value at <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mi>a</mi>\\n \\n <mo>=</mo>\\n \\n <mn>100</mn>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $Ha=100$</annotation>\\n </semantics></math> in forced and mixed convection. The average Sherwood number on the cavity's vertical walls decreases with the magnetic field in mixed and natural convection.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.22993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.22993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二元气体混合物在四面盖驱动的方形空腔中进行磁流体混合对流时的传热和传质问题。腔体左壁为正弦波加热,作为源项,而右壁则作为汇项。空腔的水平壁是绝热的,不允许传质。在布森斯克近似和流函数-涡度公式下,使用有限差分法的交替方向-隐式方案求解了控制方程。使用矩阵法证明了数值方案的一致性和稳定性。编写了 MATLAB 代码,与一些现有研究进行了验证,并用于执行数值模拟。通过可视化流线、等温线和浓度等值线等非尺寸参数,如哈特曼数、吸热或发热系数、理查森数和浮力比,对数值解进行了图形化检验。磁场会根据对流模式改变空腔中的温度和浓度分布。磁场迫使流体停滞在空腔的不同区域,这取决于对流模式。研究发现,与强制对流相比,自然对流时空腔中点的最高和最低温度与浓度之差分别增加了 13 倍和 10 倍。在没有磁场的情况下,空腔垂直壁上的平均努塞尔特数在自然对流中最大,但在强制对流和混合对流中达到最小值。在混合对流和自然对流中,空腔垂直壁上的平均舍伍德数随磁场而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat and mass transfer under MHD mixed convection in a four-sided lid-driven square cavity

This paper investigates the heat and mass transfer under magnetohydrodynamic mixed convection flow of a binary gas mixture in a four-sided lid-driven square cavity. The enclosure's left wall is sinusoidally heated and acts as a source term, while the right wall functions as a sink. The cavity's horizontal walls are adiabatic and impermeable to mass transfer. The governing equations under Boussinesq approximation and stream function-vorticity formulation are solved using the alternating-direction-implicit scheme, a finite-difference method. The numerical scheme's consistency and stability are demonstrated using the matrix method. The MATLAB code is written, validated against some existing studies, and used to perform numerical simulations. The numerical solutions are graphically examined by visualizing the streamline, isotherm, and concentration contours for nondimensional parameters, such as Hartmann number ( 0 H a 100 ) $(0\le Ha\le 100)$ , heat absorption or generation coefficient ( 2 ϕ 2 ) $(-2\le \phi \le 2)$ , Richardson number ( 0.01 R i 100 ) $(0.01\le Ri\le 100)$ , and buoyancy ratio ( 6 N 6 ) $(-6\le N\le 6)$ . The magnetic field modifies the temperature and concentration distribution in the cavity, depending on the convection mode. The magnetic field forces the fluid to stagnate in different regions of the cavity, depending on the mode of convection. It was found that the difference between the maximum and minimum temperature and concentration at the cavity's midpoint increases up to 13 and 10 times, respectively, in the natural convection compared with the forced convection. The average Nusselt number on the vertical walls of the cavity is maximum in natural convection in the absence of a magnetic field but reaches a minimum value at H a = 100 $Ha=100$ in forced and mixed convection. The average Sherwood number on the cavity's vertical walls decreases with the magnetic field in mixed and natural convection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信