M. Bakaeva, S. Chetverikov, Sergey Starikov, Aliya Kendjieva, G. Khudaygulov, D. Chetverikova
{"title":"植物生长促进菌对暴露于甲基甲磺隆的普通小麦和油菜的抗氧化状态、乙酰乳酸合成酶活性和生长的影响","authors":"M. Bakaeva, S. Chetverikov, Sergey Starikov, Aliya Kendjieva, G. Khudaygulov, D. Chetverikova","doi":"10.3390/jox14010005","DOIUrl":null,"url":null,"abstract":"Metsulfuron-methyl, a widely used herbicide, could cause damage to the sensitive plants in crop-rotation systems at extremely low levels in the soil. The potential of plant growth-promoting bacteria (PGPB) for enhancing the resistance of plants against herbicide stress has been discovered recently. Therefore, it is poorly understood how physiological processes occur in plants, while PGPB reduce the phytotoxicity of herbicides for agricultural crops. In greenhouse studies, the effect of strains Pseudomonas protegens DA1.2 and Pseudomonas chlororaphis 4CH on oxidative damage, acetolactate synthase (ALS), enzymatic and non-enzymatic antioxidants in canola (Brassica napus L.), and wheat (Triticum aestivum L.) were investigated under two levels (0.05 and 0.25 mg∙kg−1) of metsulfuron-methyl using spectrophotometric assays. The inoculation of herbicide-exposed wheat with bacteria significantly increased the shoots fresh weight (24–28%), amount of glutathione GSH (60–73%), and flavonoids (5–14%), as well as activity of ascorbate peroxidase (129–140%), superoxide dismutase SOD (35–49%), and ALS (50–57%). Bacterial treatment stimulated the activity of SOD (37–94%), ALS (65–73%), glutathione reductase (19–20%), and the accumulation of GSH (61–261%), flavonoids (17–22%), and shoots weight (27–33%) in herbicide-exposed canola. Simultaneous inoculation prevented lipid peroxidation induced by metsulfuron-methyl in sensitive plants. Based on the findings, it is possible that the protective role of bacterial strains against metsulfuron-metil is linked to antioxidant system activation.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"117 24","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Plant Growth-Promoting Bacteria on Antioxidant Status, Acetolactate Synthase Activity, and Growth of Common Wheat and Canola Exposed to Metsulfuron-Methyl\",\"authors\":\"M. Bakaeva, S. Chetverikov, Sergey Starikov, Aliya Kendjieva, G. Khudaygulov, D. Chetverikova\",\"doi\":\"10.3390/jox14010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metsulfuron-methyl, a widely used herbicide, could cause damage to the sensitive plants in crop-rotation systems at extremely low levels in the soil. The potential of plant growth-promoting bacteria (PGPB) for enhancing the resistance of plants against herbicide stress has been discovered recently. Therefore, it is poorly understood how physiological processes occur in plants, while PGPB reduce the phytotoxicity of herbicides for agricultural crops. In greenhouse studies, the effect of strains Pseudomonas protegens DA1.2 and Pseudomonas chlororaphis 4CH on oxidative damage, acetolactate synthase (ALS), enzymatic and non-enzymatic antioxidants in canola (Brassica napus L.), and wheat (Triticum aestivum L.) were investigated under two levels (0.05 and 0.25 mg∙kg−1) of metsulfuron-methyl using spectrophotometric assays. The inoculation of herbicide-exposed wheat with bacteria significantly increased the shoots fresh weight (24–28%), amount of glutathione GSH (60–73%), and flavonoids (5–14%), as well as activity of ascorbate peroxidase (129–140%), superoxide dismutase SOD (35–49%), and ALS (50–57%). Bacterial treatment stimulated the activity of SOD (37–94%), ALS (65–73%), glutathione reductase (19–20%), and the accumulation of GSH (61–261%), flavonoids (17–22%), and shoots weight (27–33%) in herbicide-exposed canola. Simultaneous inoculation prevented lipid peroxidation induced by metsulfuron-methyl in sensitive plants. Based on the findings, it is possible that the protective role of bacterial strains against metsulfuron-metil is linked to antioxidant system activation.\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"117 24\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Effect of Plant Growth-Promoting Bacteria on Antioxidant Status, Acetolactate Synthase Activity, and Growth of Common Wheat and Canola Exposed to Metsulfuron-Methyl
Metsulfuron-methyl, a widely used herbicide, could cause damage to the sensitive plants in crop-rotation systems at extremely low levels in the soil. The potential of plant growth-promoting bacteria (PGPB) for enhancing the resistance of plants against herbicide stress has been discovered recently. Therefore, it is poorly understood how physiological processes occur in plants, while PGPB reduce the phytotoxicity of herbicides for agricultural crops. In greenhouse studies, the effect of strains Pseudomonas protegens DA1.2 and Pseudomonas chlororaphis 4CH on oxidative damage, acetolactate synthase (ALS), enzymatic and non-enzymatic antioxidants in canola (Brassica napus L.), and wheat (Triticum aestivum L.) were investigated under two levels (0.05 and 0.25 mg∙kg−1) of metsulfuron-methyl using spectrophotometric assays. The inoculation of herbicide-exposed wheat with bacteria significantly increased the shoots fresh weight (24–28%), amount of glutathione GSH (60–73%), and flavonoids (5–14%), as well as activity of ascorbate peroxidase (129–140%), superoxide dismutase SOD (35–49%), and ALS (50–57%). Bacterial treatment stimulated the activity of SOD (37–94%), ALS (65–73%), glutathione reductase (19–20%), and the accumulation of GSH (61–261%), flavonoids (17–22%), and shoots weight (27–33%) in herbicide-exposed canola. Simultaneous inoculation prevented lipid peroxidation induced by metsulfuron-methyl in sensitive plants. Based on the findings, it is possible that the protective role of bacterial strains against metsulfuron-metil is linked to antioxidant system activation.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.