用于 GIS/GIL 环氧绝缘子的柔性智能表面涂层

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu-Huai Wang, Zhuo Chen, Jin Li, Zhi-Xiang Liu, Rong Chen, Hein Htet Aung, Hu-Cheng Liang, Bo-Xue Du
{"title":"用于 GIS/GIL 环氧绝缘子的柔性智能表面涂层","authors":"Yu-Huai Wang,&nbsp;Zhuo Chen,&nbsp;Jin Li,&nbsp;Zhi-Xiang Liu,&nbsp;Rong Chen,&nbsp;Hein Htet Aung,&nbsp;Hu-Cheng Liang,&nbsp;Bo-Xue Du","doi":"10.1049/nde2.12074","DOIUrl":null,"url":null,"abstract":"<p>A flexible smart coating with electroluminescence effect was designed and fabricated on the surface of gas insulated switch gear (GIS)/gas insulated transmission line (GIL) epoxy insulators based on two-step curing process. As the AC voltage increases, the luminous area on the insulator surface expands from the centre to the periphery, and the light intensity shows a linear relationship with the applied voltage. Besides, the flexible smart coating can effectively identify the location of metal particle defects and the degree of electric field distortion. The flexible smart coating enhances the surface flashover voltage due to its higher dielectric constant. Simultaneously, metal particle contamination can substantially reduce the insulation performance of epoxy insulators, particularly when they are located near the high-voltage side. It is hoped that this study can provide a reference for the smart detection of surface defects GIS/GIL basin insulators.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12074","citationCount":"0","resultStr":"{\"title\":\"Flexible smart surface coating for GIS/GIL epoxy insulators\",\"authors\":\"Yu-Huai Wang,&nbsp;Zhuo Chen,&nbsp;Jin Li,&nbsp;Zhi-Xiang Liu,&nbsp;Rong Chen,&nbsp;Hein Htet Aung,&nbsp;Hu-Cheng Liang,&nbsp;Bo-Xue Du\",\"doi\":\"10.1049/nde2.12074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A flexible smart coating with electroluminescence effect was designed and fabricated on the surface of gas insulated switch gear (GIS)/gas insulated transmission line (GIL) epoxy insulators based on two-step curing process. As the AC voltage increases, the luminous area on the insulator surface expands from the centre to the periphery, and the light intensity shows a linear relationship with the applied voltage. Besides, the flexible smart coating can effectively identify the location of metal particle defects and the degree of electric field distortion. The flexible smart coating enhances the surface flashover voltage due to its higher dielectric constant. Simultaneously, metal particle contamination can substantially reduce the insulation performance of epoxy insulators, particularly when they are located near the high-voltage side. It is hoped that this study can provide a reference for the smart detection of surface defects GIS/GIL basin insulators.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于两步固化工艺,在气体绝缘开关设备(GIS)/气体绝缘输电线路(GIL)环氧绝缘子表面设计并制造了一种具有电致发光效果的柔性智能涂层。随着交流电压的增加,绝缘体表面的发光面积从中心向外围扩展,发光强度与所加电压呈线性关系。此外,柔性智能涂层还能有效识别金属颗粒缺陷的位置和电场畸变程度。由于柔性智能涂层的介电常数较高,它能增强表面闪络电压。同时,金属颗粒污染会大大降低环氧绝缘体的绝缘性能,尤其是当它们位于高压侧附近时。希望本研究能为 GIS/GIL 盆式绝缘子表面缺陷的智能检测提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible smart surface coating for GIS/GIL epoxy insulators

Flexible smart surface coating for GIS/GIL epoxy insulators

A flexible smart coating with electroluminescence effect was designed and fabricated on the surface of gas insulated switch gear (GIS)/gas insulated transmission line (GIL) epoxy insulators based on two-step curing process. As the AC voltage increases, the luminous area on the insulator surface expands from the centre to the periphery, and the light intensity shows a linear relationship with the applied voltage. Besides, the flexible smart coating can effectively identify the location of metal particle defects and the degree of electric field distortion. The flexible smart coating enhances the surface flashover voltage due to its higher dielectric constant. Simultaneously, metal particle contamination can substantially reduce the insulation performance of epoxy insulators, particularly when they are located near the high-voltage side. It is hoped that this study can provide a reference for the smart detection of surface defects GIS/GIL basin insulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信