Oscar López-Gorozabel, Ricardo Malla-Valdiviezo, Gabriel Morejón-López, Miguel León-Bravo
{"title":"农作物虫害检测系统","authors":"Oscar López-Gorozabel, Ricardo Malla-Valdiviezo, Gabriel Morejón-López, Miguel León-Bravo","doi":"10.33386/593dp.2024.1.1898","DOIUrl":null,"url":null,"abstract":"La presente investigación propone la construcción de una aplicación web destinada a la detección de plagas, en su primera fase se ha propuesto la detección de la plaga de mosca blanca, una de las más recurrentes en los cultivos de Manabí, afectando principal-mente al cultivo de plantas como tomate, pimiento, col y cucurbitáceas como calabaza, pe-pino y hortalizas de hoja como lechuga o perejil. Este Proyecto busca convertirse en un agente de monitorización de cultivos, actuando de forma automática y eficaz en la detec-ción de plagas mediante el procesado de imágenes, para lo cual se desarrollaron diversos algoritmos soportados por la librería ImageAI, con los que fue posible crear, entrenar y pro-bar un modelo de detección. En cuanto al funcionamiento de la aplicación web, el usuario podrá crear una cuenta y una vez logueado podrá acceder al módulo de captura, donde po-drá tomar o subir una foto para su análisis respectivo. \nEsta investigación se basa en el método bibliográfico y analítico, además la infor-mación es de fuentes confiables, tales como: IEEE, Dialnet, ACM, Google Scholar, Repo-sitorios Institucionales. Para el desarrollo de la aplicación web se utilizó el lenguaje de pro-gramación Python para el Backend y tecnologías como HTML, W3Css y JavaScript para el Frontend. Posteriormente, se utilizó MySQL para crear la base de datos. \nEl framework utilizado para el desarrollo de la aplicación fue Scrum, debido a la versa-tilidad de su metodología. Finalmente, como resultado de este proyecto, se obtiene la primera versión de un software funcional, con aspiraciones de mejora en futuras versiones. ","PeriodicalId":488512,"journal":{"name":"593 Digital Publisher CEIT","volume":"110 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistema de detección de plagas en los cultivos\",\"authors\":\"Oscar López-Gorozabel, Ricardo Malla-Valdiviezo, Gabriel Morejón-López, Miguel León-Bravo\",\"doi\":\"10.33386/593dp.2024.1.1898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La presente investigación propone la construcción de una aplicación web destinada a la detección de plagas, en su primera fase se ha propuesto la detección de la plaga de mosca blanca, una de las más recurrentes en los cultivos de Manabí, afectando principal-mente al cultivo de plantas como tomate, pimiento, col y cucurbitáceas como calabaza, pe-pino y hortalizas de hoja como lechuga o perejil. Este Proyecto busca convertirse en un agente de monitorización de cultivos, actuando de forma automática y eficaz en la detec-ción de plagas mediante el procesado de imágenes, para lo cual se desarrollaron diversos algoritmos soportados por la librería ImageAI, con los que fue posible crear, entrenar y pro-bar un modelo de detección. En cuanto al funcionamiento de la aplicación web, el usuario podrá crear una cuenta y una vez logueado podrá acceder al módulo de captura, donde po-drá tomar o subir una foto para su análisis respectivo. \\nEsta investigación se basa en el método bibliográfico y analítico, además la infor-mación es de fuentes confiables, tales como: IEEE, Dialnet, ACM, Google Scholar, Repo-sitorios Institucionales. Para el desarrollo de la aplicación web se utilizó el lenguaje de pro-gramación Python para el Backend y tecnologías como HTML, W3Css y JavaScript para el Frontend. Posteriormente, se utilizó MySQL para crear la base de datos. \\nEl framework utilizado para el desarrollo de la aplicación fue Scrum, debido a la versa-tilidad de su metodología. Finalmente, como resultado de este proyecto, se obtiene la primera versión de un software funcional, con aspiraciones de mejora en futuras versiones. \",\"PeriodicalId\":488512,\"journal\":{\"name\":\"593 Digital Publisher CEIT\",\"volume\":\"110 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"593 Digital Publisher CEIT\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.33386/593dp.2024.1.1898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"593 Digital Publisher CEIT","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.33386/593dp.2024.1.1898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
La presente investigación propone la construcción de una aplicación web destinada a la detección de plagas, en su primera fase se ha propuesto la detección de la plaga de mosca blanca, una de las más recurrentes en los cultivos de Manabí, afectando principal-mente al cultivo de plantas como tomate, pimiento, col y cucurbitáceas como calabaza, pe-pino y hortalizas de hoja como lechuga o perejil. Este Proyecto busca convertirse en un agente de monitorización de cultivos, actuando de forma automática y eficaz en la detec-ción de plagas mediante el procesado de imágenes, para lo cual se desarrollaron diversos algoritmos soportados por la librería ImageAI, con los que fue posible crear, entrenar y pro-bar un modelo de detección. En cuanto al funcionamiento de la aplicación web, el usuario podrá crear una cuenta y una vez logueado podrá acceder al módulo de captura, donde po-drá tomar o subir una foto para su análisis respectivo.
Esta investigación se basa en el método bibliográfico y analítico, además la infor-mación es de fuentes confiables, tales como: IEEE, Dialnet, ACM, Google Scholar, Repo-sitorios Institucionales. Para el desarrollo de la aplicación web se utilizó el lenguaje de pro-gramación Python para el Backend y tecnologías como HTML, W3Css y JavaScript para el Frontend. Posteriormente, se utilizó MySQL para crear la base de datos.
El framework utilizado para el desarrollo de la aplicación fue Scrum, debido a la versa-tilidad de su metodología. Finalmente, como resultado de este proyecto, se obtiene la primera versión de un software funcional, con aspiraciones de mejora en futuras versiones.