人工智能与傅立叶光学:应用 DeepLabV3+ 恢复光传播中的衍射孔径

C. Camacho-Bello, L. Gutiérrez-Lazcano, R. Ortega-Mendoza
{"title":"人工智能与傅立叶光学:应用 DeepLabV3+ 恢复光传播中的衍射孔径","authors":"C. Camacho-Bello, L. Gutiérrez-Lazcano, R. Ortega-Mendoza","doi":"10.31349/revmexfis.70.011301","DOIUrl":null,"url":null,"abstract":"The combination of Fourier Optics and Artificial Intelligence has driven significant advances in image processing and modeling of optical systems, with the UNet architecture being the main protagonist. However, the DeepLabV3+ network has recently shown promising performance in detecting transfer opens. In this study, we investigate the effectiveness of DeepLabV3+ in identifying transfer apertures in light propagation models and compare its performance with that of UNet. The results reveal that DeepLabV3+ outperforms UNet in terms of accuracy and robustness in identifying transfer apertures, even in the presence of noise and aperture shape variations.","PeriodicalId":207412,"journal":{"name":"Revista Mexicana de Física","volume":"37 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and Fourier optics: Application of DeepLabV3+ in the recovery of a diffracting aperture in light propagation\",\"authors\":\"C. Camacho-Bello, L. Gutiérrez-Lazcano, R. Ortega-Mendoza\",\"doi\":\"10.31349/revmexfis.70.011301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of Fourier Optics and Artificial Intelligence has driven significant advances in image processing and modeling of optical systems, with the UNet architecture being the main protagonist. However, the DeepLabV3+ network has recently shown promising performance in detecting transfer opens. In this study, we investigate the effectiveness of DeepLabV3+ in identifying transfer apertures in light propagation models and compare its performance with that of UNet. The results reveal that DeepLabV3+ outperforms UNet in terms of accuracy and robustness in identifying transfer apertures, even in the presence of noise and aperture shape variations.\",\"PeriodicalId\":207412,\"journal\":{\"name\":\"Revista Mexicana de Física\",\"volume\":\"37 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana de Física\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.70.011301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfis.70.011301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

傅立叶光学与人工智能的结合推动了光学系统图像处理和建模的重大进展,而 UNet 架构则是其中的主角。然而,DeepLabV3+ 网络最近在检测转移开口方面表现出了可喜的性能。在本研究中,我们研究了 DeepLabV3+ 在光传播模型中识别传递开口的有效性,并将其性能与 UNet 进行了比较。结果显示,DeepLabV3+ 在识别转移开孔的准确性和鲁棒性方面优于 UNet,即使在存在噪声和开孔形状变化的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence and Fourier optics: Application of DeepLabV3+ in the recovery of a diffracting aperture in light propagation
The combination of Fourier Optics and Artificial Intelligence has driven significant advances in image processing and modeling of optical systems, with the UNet architecture being the main protagonist. However, the DeepLabV3+ network has recently shown promising performance in detecting transfer opens. In this study, we investigate the effectiveness of DeepLabV3+ in identifying transfer apertures in light propagation models and compare its performance with that of UNet. The results reveal that DeepLabV3+ outperforms UNet in terms of accuracy and robustness in identifying transfer apertures, even in the presence of noise and aperture shape variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信