Jinlan Luo, Changyong Song, Yunling Chen and Keyin Liu*,
{"title":"具有 pH 值和粘度可调性能的近红外荧光探针,用于检测活体动物和器官中的血栓","authors":"Jinlan Luo, Changyong Song, Yunling Chen and Keyin Liu*, ","doi":"10.1021/cbmi.3c00110","DOIUrl":null,"url":null,"abstract":"<p >Blood viscosity changes and blood clots are high-impact diseases, but the pathogenic mechanisms and detection methods are still limited. Due to the complexity of the cellular microenvironment, viscosity is a key factor in regulating the behavior of mitochondria and lysosomes in cells. Conventional fluorescence probes are highly restrictive for complex viscosity detection in live animals. Therefore, we developed two near-infrared fluorescence probes, <b>QL1</b> and <b>QL2</b>, with dual responses to the pH and viscosity. Notably, <b>QL2</b> has two maximum fluorescence emissions at 680 and 750 nm, when excitation by 580 and 700 nm, respectively. <b>QL2</b> exhibited both a pH and viscosity switchable fluorescence response. The two emission peaks exhibited a reverse change trend: the fluorescence at 680 nm decreased by 90%, and the fluorescence at 750 nm increased by about 5-fold with pH from 2 to 10. Meanwhile, both emission peaks show remarkable fluorescence enhancement toward viscosity change, with 185 and 32 times enhancement, respectively. The sensing mechanism and spectral changes are confirmed by DFT calculations. <b>QL2</b> was further used for viscosity imaging in live cells, zebrafish, and live animals. Most importantly, <b>QL2</b> is able to successfully track changes in blood clots in live mice and organs, thus enabling the study of blood clots in cerebral strokes and the underlying pathological mechanisms.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 6","pages":"422–431"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00110","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Fluorescent Probe with pH- and Viscosity-Switchable Performance for the Detection of Thrombi in Live Animals and Organs\",\"authors\":\"Jinlan Luo, Changyong Song, Yunling Chen and Keyin Liu*, \",\"doi\":\"10.1021/cbmi.3c00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Blood viscosity changes and blood clots are high-impact diseases, but the pathogenic mechanisms and detection methods are still limited. Due to the complexity of the cellular microenvironment, viscosity is a key factor in regulating the behavior of mitochondria and lysosomes in cells. Conventional fluorescence probes are highly restrictive for complex viscosity detection in live animals. Therefore, we developed two near-infrared fluorescence probes, <b>QL1</b> and <b>QL2</b>, with dual responses to the pH and viscosity. Notably, <b>QL2</b> has two maximum fluorescence emissions at 680 and 750 nm, when excitation by 580 and 700 nm, respectively. <b>QL2</b> exhibited both a pH and viscosity switchable fluorescence response. The two emission peaks exhibited a reverse change trend: the fluorescence at 680 nm decreased by 90%, and the fluorescence at 750 nm increased by about 5-fold with pH from 2 to 10. Meanwhile, both emission peaks show remarkable fluorescence enhancement toward viscosity change, with 185 and 32 times enhancement, respectively. The sensing mechanism and spectral changes are confirmed by DFT calculations. <b>QL2</b> was further used for viscosity imaging in live cells, zebrafish, and live animals. Most importantly, <b>QL2</b> is able to successfully track changes in blood clots in live mice and organs, thus enabling the study of blood clots in cerebral strokes and the underlying pathological mechanisms.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 6\",\"pages\":\"422–431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-Infrared Fluorescent Probe with pH- and Viscosity-Switchable Performance for the Detection of Thrombi in Live Animals and Organs
Blood viscosity changes and blood clots are high-impact diseases, but the pathogenic mechanisms and detection methods are still limited. Due to the complexity of the cellular microenvironment, viscosity is a key factor in regulating the behavior of mitochondria and lysosomes in cells. Conventional fluorescence probes are highly restrictive for complex viscosity detection in live animals. Therefore, we developed two near-infrared fluorescence probes, QL1 and QL2, with dual responses to the pH and viscosity. Notably, QL2 has two maximum fluorescence emissions at 680 and 750 nm, when excitation by 580 and 700 nm, respectively. QL2 exhibited both a pH and viscosity switchable fluorescence response. The two emission peaks exhibited a reverse change trend: the fluorescence at 680 nm decreased by 90%, and the fluorescence at 750 nm increased by about 5-fold with pH from 2 to 10. Meanwhile, both emission peaks show remarkable fluorescence enhancement toward viscosity change, with 185 and 32 times enhancement, respectively. The sensing mechanism and spectral changes are confirmed by DFT calculations. QL2 was further used for viscosity imaging in live cells, zebrafish, and live animals. Most importantly, QL2 is able to successfully track changes in blood clots in live mice and organs, thus enabling the study of blood clots in cerebral strokes and the underlying pathological mechanisms.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging