{"title":"基因组编辑技术的现状:2024 年 BMB 报告特刊。","authors":"Ju-Chan Park, Sangsu Bae","doi":"10.5483/bmbrep.2023-0248","DOIUrl":null,"url":null,"abstract":"Since the identification of DNA as a genetic material, manipulating DNA in various organisms has been a long standing dream of humanity. In pursuit of this objective, technologies to edit genome have been extensively developed over the recent decades. The emergence of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems enabled site-specific DNA cleavage in a programmable manner. Furthermore, the advent of base editors (BEs) and prime editors (PEs) has enabled base conversion and insertion/deletion with a high accuracy. In addition to the editing of genomic DNA in the nucleus, attempts to manipulate circular DNAs in organelle are currently ongoing. These technologies are bringing major progress in diverse fields including the engineering of cells, livestock, and plants as well as therapeutic gene correction in humans. In this special issue, we aim to cover the recent advances in genome editing technology and its applications in therapeutics, breed improvement in plants and livestock, RNA recording, and protein evolution.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current status of genome editing technologies: special issue of BMB Reports in 2024.\",\"authors\":\"Ju-Chan Park, Sangsu Bae\",\"doi\":\"10.5483/bmbrep.2023-0248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the identification of DNA as a genetic material, manipulating DNA in various organisms has been a long standing dream of humanity. In pursuit of this objective, technologies to edit genome have been extensively developed over the recent decades. The emergence of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems enabled site-specific DNA cleavage in a programmable manner. Furthermore, the advent of base editors (BEs) and prime editors (PEs) has enabled base conversion and insertion/deletion with a high accuracy. In addition to the editing of genomic DNA in the nucleus, attempts to manipulate circular DNAs in organelle are currently ongoing. These technologies are bringing major progress in diverse fields including the engineering of cells, livestock, and plants as well as therapeutic gene correction in humans. In this special issue, we aim to cover the recent advances in genome editing technology and its applications in therapeutics, breed improvement in plants and livestock, RNA recording, and protein evolution.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5483/bmbrep.2023-0248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5483/bmbrep.2023-0248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
自从 DNA 被确认为遗传物质以来,操纵各种生物的 DNA 一直是人类的夙愿。为了实现这一目标,近几十年来基因组编辑技术得到了广泛的发展。锌指核酸酶(ZFN)、转录激活剂样效应核酸酶(TALEN)、簇状规则间隔短回文重复序列(CRISPR)和CRISPR相关(Cas)系统的出现,实现了以可编程的方式定点切割DNA。此外,碱基编辑器(BE)和质粒编辑器(PE)的出现也实现了高精度的碱基转换和插入/删除。除了编辑细胞核中的基因组 DNA 外,目前还在尝试操纵细胞器中的环状 DNA。这些技术在多个领域都取得了重大进展,包括细胞、牲畜和植物工程以及人类治疗性基因矫正。本特刊旨在介绍基因组编辑技术的最新进展及其在治疗、植物和家畜品种改良、RNA记录和蛋白质进化方面的应用。
Current status of genome editing technologies: special issue of BMB Reports in 2024.
Since the identification of DNA as a genetic material, manipulating DNA in various organisms has been a long standing dream of humanity. In pursuit of this objective, technologies to edit genome have been extensively developed over the recent decades. The emergence of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems enabled site-specific DNA cleavage in a programmable manner. Furthermore, the advent of base editors (BEs) and prime editors (PEs) has enabled base conversion and insertion/deletion with a high accuracy. In addition to the editing of genomic DNA in the nucleus, attempts to manipulate circular DNAs in organelle are currently ongoing. These technologies are bringing major progress in diverse fields including the engineering of cells, livestock, and plants as well as therapeutic gene correction in humans. In this special issue, we aim to cover the recent advances in genome editing technology and its applications in therapeutics, breed improvement in plants and livestock, RNA recording, and protein evolution.