利用高度函数构建分片圆形界面

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ram Kumar Maity, T. Sundararajan, K. Velusamy
{"title":"利用高度函数构建分片圆形界面","authors":"Ram Kumar Maity,&nbsp;T. Sundararajan,&nbsp;K. Velusamy","doi":"10.1002/fld.5256","DOIUrl":null,"url":null,"abstract":"<p>A piecewise circular interface construction (PCIC) method is described, where height functions based curvature estimates are directly utilised for accurate interface reconstruction under the framework of volume of fluid method. The present work is an attempt to develop a robust and accurate higher order interface reconstruction algorithm that is capable of accurate simulation of surface tension dominated flows. The proposed hybrid method (H-PCIC) is thus able to take advantage of merits of both PCIC and HF methods, achieving at least second order convergence with respect to both interface reconstruction and curvature computation. This is in addition to the significantly superior quality of the reconstructed interface with respect to PLIC methods. This seamless blending of the HF and PCIC quantities is enabled by c0-correction procedures applied to base PLIC and initial PCIC steps. More recent variants of the height function method with variable stencil size are used for calculation of radius of curvature. The capability of this proposed method towards simulation of flow problems within a well-balanced two-phase solver is established with help of multiple complex two-phase flow problems. This validation exercise also demonstrates the capability of PCIC class of methods towards solutions of two-phase flows with intricate physics.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 4","pages":"574-599"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise circular interface construction using height functions\",\"authors\":\"Ram Kumar Maity,&nbsp;T. Sundararajan,&nbsp;K. Velusamy\",\"doi\":\"10.1002/fld.5256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A piecewise circular interface construction (PCIC) method is described, where height functions based curvature estimates are directly utilised for accurate interface reconstruction under the framework of volume of fluid method. The present work is an attempt to develop a robust and accurate higher order interface reconstruction algorithm that is capable of accurate simulation of surface tension dominated flows. The proposed hybrid method (H-PCIC) is thus able to take advantage of merits of both PCIC and HF methods, achieving at least second order convergence with respect to both interface reconstruction and curvature computation. This is in addition to the significantly superior quality of the reconstructed interface with respect to PLIC methods. This seamless blending of the HF and PCIC quantities is enabled by c0-correction procedures applied to base PLIC and initial PCIC steps. More recent variants of the height function method with variable stencil size are used for calculation of radius of curvature. The capability of this proposed method towards simulation of flow problems within a well-balanced two-phase solver is established with help of multiple complex two-phase flow problems. This validation exercise also demonstrates the capability of PCIC class of methods towards solutions of two-phase flows with intricate physics.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 4\",\"pages\":\"574-599\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5256\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种片状圆形界面构建(PCIC)方法,在该方法中,基于高度函数的曲率估算直接用于流体体积法框架下的精确界面重建。本研究试图开发一种稳健、精确的高阶界面重构算法,能够精确模拟表面张力主导的流动。因此,所提出的混合方法(H-PCIC)能够利用 PCIC 和高频方法的优点,在界面重建和曲率计算方面至少达到二阶收敛。此外,与 PLIC 方法相比,重建界面的质量也有显著提高。这种高频和 PCIC 量的无缝融合是通过应用于基本 PLIC 和初始 PCIC 步骤的 c0 修正程序实现的。在计算曲率半径时,使用了高度函数法的最新变体,其模板尺寸可变。在多个复杂两相流问题的帮助下,证明了所提出的方法在平衡良好的两相流求解器中模拟流动问题的能力。这项验证工作还证明了 PCIC 类方法在解决复杂物理两相流问题方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piecewise circular interface construction using height functions

Piecewise circular interface construction using height functions

A piecewise circular interface construction (PCIC) method is described, where height functions based curvature estimates are directly utilised for accurate interface reconstruction under the framework of volume of fluid method. The present work is an attempt to develop a robust and accurate higher order interface reconstruction algorithm that is capable of accurate simulation of surface tension dominated flows. The proposed hybrid method (H-PCIC) is thus able to take advantage of merits of both PCIC and HF methods, achieving at least second order convergence with respect to both interface reconstruction and curvature computation. This is in addition to the significantly superior quality of the reconstructed interface with respect to PLIC methods. This seamless blending of the HF and PCIC quantities is enabled by c0-correction procedures applied to base PLIC and initial PCIC steps. More recent variants of the height function method with variable stencil size are used for calculation of radius of curvature. The capability of this proposed method towards simulation of flow problems within a well-balanced two-phase solver is established with help of multiple complex two-phase flow problems. This validation exercise also demonstrates the capability of PCIC class of methods towards solutions of two-phase flows with intricate physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信