Qinyu Huang, Zhenli Tang, Xiaofeng Weng, Min He, Fang Liu, Mingfa Yang, Tao Jin
{"title":"基于双时特征融合和深度学习方法的新型窃电检测策略","authors":"Qinyu Huang, Zhenli Tang, Xiaofeng Weng, Min He, Fang Liu, Mingfa Yang, Tao Jin","doi":"10.3390/en17020275","DOIUrl":null,"url":null,"abstract":"To enhance the accuracy of theft detection for electricity consumers, this paper introduces a novel strategy based on the fusion of the dual-time feature and deep learning methods. Initially, considering electricity-consumption features at dual temporal scales, the paper employs temporal convolutional networks (TCN) with a long short-term memory (LSTM) multi-level feature extraction module (LSTM-TCN) and deep convolutional neural network (DCNN) to parallelly extract features at these scales. Subsequently, the extracted features are coupled and input into a fully connected (FC) layer for classification, enabling the precise detection of theft users. To validate the method’s effectiveness, real electricity-consumption data from the State Grid Corporation of China (SGCC) is used for testing. The experimental results demonstrate that the proposed method achieves a remarkable detection accuracy of up to 94.7% during testing, showcasing excellent performance across various evaluation metrics. Specifically, it attained values of 0.932, 0.964, 0.948, and 0.986 for precision, recall, F1 score, and AUC, respectively. Additionally, the paper conducts a comparative analysis with mainstream theft identification approaches. In the comparison of training processes, the proposed method exhibits significant advantages in terms of identification accuracy and fitting degree. Moreover, with adjustments to the training set proportions, the proposed method shows minimal impact, indicating robustness.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"96 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods\",\"authors\":\"Qinyu Huang, Zhenli Tang, Xiaofeng Weng, Min He, Fang Liu, Mingfa Yang, Tao Jin\",\"doi\":\"10.3390/en17020275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the accuracy of theft detection for electricity consumers, this paper introduces a novel strategy based on the fusion of the dual-time feature and deep learning methods. Initially, considering electricity-consumption features at dual temporal scales, the paper employs temporal convolutional networks (TCN) with a long short-term memory (LSTM) multi-level feature extraction module (LSTM-TCN) and deep convolutional neural network (DCNN) to parallelly extract features at these scales. Subsequently, the extracted features are coupled and input into a fully connected (FC) layer for classification, enabling the precise detection of theft users. To validate the method’s effectiveness, real electricity-consumption data from the State Grid Corporation of China (SGCC) is used for testing. The experimental results demonstrate that the proposed method achieves a remarkable detection accuracy of up to 94.7% during testing, showcasing excellent performance across various evaluation metrics. Specifically, it attained values of 0.932, 0.964, 0.948, and 0.986 for precision, recall, F1 score, and AUC, respectively. Additionally, the paper conducts a comparative analysis with mainstream theft identification approaches. In the comparison of training processes, the proposed method exhibits significant advantages in terms of identification accuracy and fitting degree. Moreover, with adjustments to the training set proportions, the proposed method shows minimal impact, indicating robustness.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\"96 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17020275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17020275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods
To enhance the accuracy of theft detection for electricity consumers, this paper introduces a novel strategy based on the fusion of the dual-time feature and deep learning methods. Initially, considering electricity-consumption features at dual temporal scales, the paper employs temporal convolutional networks (TCN) with a long short-term memory (LSTM) multi-level feature extraction module (LSTM-TCN) and deep convolutional neural network (DCNN) to parallelly extract features at these scales. Subsequently, the extracted features are coupled and input into a fully connected (FC) layer for classification, enabling the precise detection of theft users. To validate the method’s effectiveness, real electricity-consumption data from the State Grid Corporation of China (SGCC) is used for testing. The experimental results demonstrate that the proposed method achieves a remarkable detection accuracy of up to 94.7% during testing, showcasing excellent performance across various evaluation metrics. Specifically, it attained values of 0.932, 0.964, 0.948, and 0.986 for precision, recall, F1 score, and AUC, respectively. Additionally, the paper conducts a comparative analysis with mainstream theft identification approaches. In the comparison of training processes, the proposed method exhibits significant advantages in terms of identification accuracy and fitting degree. Moreover, with adjustments to the training set proportions, the proposed method shows minimal impact, indicating robustness.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.