N. Zacharof, Evangelos Bitsanis, Stijn Broekaert, G. Fontaras
{"title":"减少混合动力重型卡车和巴士的二氧化碳排放:为向低碳交通过渡铺平道路","authors":"N. Zacharof, Evangelos Bitsanis, Stijn Broekaert, G. Fontaras","doi":"10.3390/en17020286","DOIUrl":null,"url":null,"abstract":"This study investigates the CO2 reduction potential of powertrain hybridisation on heavy-duty lorries and city buses. The analysis considers modern parallel and serial hybrid architectures, assessing their efficiency and limits in CO2 emission reduction through vehicle simulation in VECTO, which is the official tool of the European Commission for calculating heavy-duty vehicle fuel and energy consumption. The results reveal distinct trends for each vehicle type and architecture. In lorries, more significant improvements are observed in urban delivery profiles, reaching up to ~16%, indicating the benefits of hybridisation in transient conditions with energy recuperation opportunities. City buses, particularly those with serial architectures, exhibit significant emission reductions that reach 36%, making them suitable for urban environments. The optimisation of electric motor size and performance plays a crucial role in achieving emission reductions, while battery capacity must be carefully considered to avoid adverse effects. For lorries in urban delivery use, further improvements of 17.5% can be achieved by utilising a 160 kW engine motor and 30 kWh battery. Buses are already quite well optimised, with serial architecture presenting the highest benefits with a 120 kW electric motor and a battery of 11 kWh. Future research should focus on supercapacitors and gearboxes to improve efficiency at higher vehicle speeds and assess hybridisation potential in interurban coach travel. The heavy-duty vehicle sector can make significant strides towards low-carbon transport by maximising hybrid powertrain efficiency and emission reductions.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"38 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing CO2 Emissions of Hybrid Heavy-Duty Trucks and Buses: Paving the Transition to Low-Carbon Transport\",\"authors\":\"N. Zacharof, Evangelos Bitsanis, Stijn Broekaert, G. Fontaras\",\"doi\":\"10.3390/en17020286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the CO2 reduction potential of powertrain hybridisation on heavy-duty lorries and city buses. The analysis considers modern parallel and serial hybrid architectures, assessing their efficiency and limits in CO2 emission reduction through vehicle simulation in VECTO, which is the official tool of the European Commission for calculating heavy-duty vehicle fuel and energy consumption. The results reveal distinct trends for each vehicle type and architecture. In lorries, more significant improvements are observed in urban delivery profiles, reaching up to ~16%, indicating the benefits of hybridisation in transient conditions with energy recuperation opportunities. City buses, particularly those with serial architectures, exhibit significant emission reductions that reach 36%, making them suitable for urban environments. The optimisation of electric motor size and performance plays a crucial role in achieving emission reductions, while battery capacity must be carefully considered to avoid adverse effects. For lorries in urban delivery use, further improvements of 17.5% can be achieved by utilising a 160 kW engine motor and 30 kWh battery. Buses are already quite well optimised, with serial architecture presenting the highest benefits with a 120 kW electric motor and a battery of 11 kWh. Future research should focus on supercapacitors and gearboxes to improve efficiency at higher vehicle speeds and assess hybridisation potential in interurban coach travel. The heavy-duty vehicle sector can make significant strides towards low-carbon transport by maximising hybrid powertrain efficiency and emission reductions.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17020286\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17020286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Reducing CO2 Emissions of Hybrid Heavy-Duty Trucks and Buses: Paving the Transition to Low-Carbon Transport
This study investigates the CO2 reduction potential of powertrain hybridisation on heavy-duty lorries and city buses. The analysis considers modern parallel and serial hybrid architectures, assessing their efficiency and limits in CO2 emission reduction through vehicle simulation in VECTO, which is the official tool of the European Commission for calculating heavy-duty vehicle fuel and energy consumption. The results reveal distinct trends for each vehicle type and architecture. In lorries, more significant improvements are observed in urban delivery profiles, reaching up to ~16%, indicating the benefits of hybridisation in transient conditions with energy recuperation opportunities. City buses, particularly those with serial architectures, exhibit significant emission reductions that reach 36%, making them suitable for urban environments. The optimisation of electric motor size and performance plays a crucial role in achieving emission reductions, while battery capacity must be carefully considered to avoid adverse effects. For lorries in urban delivery use, further improvements of 17.5% can be achieved by utilising a 160 kW engine motor and 30 kWh battery. Buses are already quite well optimised, with serial architecture presenting the highest benefits with a 120 kW electric motor and a battery of 11 kWh. Future research should focus on supercapacitors and gearboxes to improve efficiency at higher vehicle speeds and assess hybridisation potential in interurban coach travel. The heavy-duty vehicle sector can make significant strides towards low-carbon transport by maximising hybrid powertrain efficiency and emission reductions.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.