{"title":"多个评分者的一致性测量:弗雷谢特方差与推理。","authors":"Jonas Moss","doi":"10.1007/s11336-023-09945-2","DOIUrl":null,"url":null,"abstract":"<p><p>Most measures of agreement are chance-corrected. They differ in three dimensions: their definition of chance agreement, their choice of disagreement function, and how they handle multiple raters. Chance agreement is usually defined in a pairwise manner, following either Cohen's kappa or Fleiss's kappa. The disagreement function is usually a nominal, quadratic, or absolute value function. But how to handle multiple raters is contentious, with the main contenders being Fleiss's kappa, Conger's kappa, and Hubert's kappa, the variant of Fleiss's kappa where agreement is said to occur only if every rater agrees. More generally, multi-rater agreement coefficients can be defined in a g-wise way, where the disagreement weighting function uses g raters instead of two. This paper contains two main contributions. (a) We propose using Fréchet variances to handle the case of multiple raters. The Fréchet variances are intuitive disagreement measures and turn out to generalize the nominal, quadratic, and absolute value functions to the case of more than two raters. (b) We derive the limit theory of g-wise weighted agreement coefficients, with chance agreement of the Cohen-type or Fleiss-type, for the case where every item is rated by the same number of raters. Trying out three confidence interval constructions, we end up recommending calculating confidence intervals using the arcsine transform or the Fisher transform.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"517-541"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164747/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measures of Agreement with Multiple Raters: Fréchet Variances and Inference.\",\"authors\":\"Jonas Moss\",\"doi\":\"10.1007/s11336-023-09945-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most measures of agreement are chance-corrected. They differ in three dimensions: their definition of chance agreement, their choice of disagreement function, and how they handle multiple raters. Chance agreement is usually defined in a pairwise manner, following either Cohen's kappa or Fleiss's kappa. The disagreement function is usually a nominal, quadratic, or absolute value function. But how to handle multiple raters is contentious, with the main contenders being Fleiss's kappa, Conger's kappa, and Hubert's kappa, the variant of Fleiss's kappa where agreement is said to occur only if every rater agrees. More generally, multi-rater agreement coefficients can be defined in a g-wise way, where the disagreement weighting function uses g raters instead of two. This paper contains two main contributions. (a) We propose using Fréchet variances to handle the case of multiple raters. The Fréchet variances are intuitive disagreement measures and turn out to generalize the nominal, quadratic, and absolute value functions to the case of more than two raters. (b) We derive the limit theory of g-wise weighted agreement coefficients, with chance agreement of the Cohen-type or Fleiss-type, for the case where every item is rated by the same number of raters. Trying out three confidence interval constructions, we end up recommending calculating confidence intervals using the arcsine transform or the Fisher transform.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"517-541\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09945-2\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09945-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Measures of Agreement with Multiple Raters: Fréchet Variances and Inference.
Most measures of agreement are chance-corrected. They differ in three dimensions: their definition of chance agreement, their choice of disagreement function, and how they handle multiple raters. Chance agreement is usually defined in a pairwise manner, following either Cohen's kappa or Fleiss's kappa. The disagreement function is usually a nominal, quadratic, or absolute value function. But how to handle multiple raters is contentious, with the main contenders being Fleiss's kappa, Conger's kappa, and Hubert's kappa, the variant of Fleiss's kappa where agreement is said to occur only if every rater agrees. More generally, multi-rater agreement coefficients can be defined in a g-wise way, where the disagreement weighting function uses g raters instead of two. This paper contains two main contributions. (a) We propose using Fréchet variances to handle the case of multiple raters. The Fréchet variances are intuitive disagreement measures and turn out to generalize the nominal, quadratic, and absolute value functions to the case of more than two raters. (b) We derive the limit theory of g-wise weighted agreement coefficients, with chance agreement of the Cohen-type or Fleiss-type, for the case where every item is rated by the same number of raters. Trying out three confidence interval constructions, we end up recommending calculating confidence intervals using the arcsine transform or the Fisher transform.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.