将低垩白度 QTLs 排列成金字塔是降低水稻垩白度的有效方法。

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2024-01-08 DOI:10.1186/s12284-023-00680-x
Weifeng Yang, Songliang Chen, Qingwen Hao, Haitao Zhu, Quanya Tan, Shaojun Lin, Guodong Chen, Zhan Li, Suhong Bu, Zupei Liu, Guifu Liu, Shaokui Wang, Guiquan Zhang
{"title":"将低垩白度 QTLs 排列成金字塔是降低水稻垩白度的有效方法。","authors":"Weifeng Yang, Songliang Chen, Qingwen Hao, Haitao Zhu, Quanya Tan, Shaojun Lin, Guodong Chen, Zhan Li, Suhong Bu, Zupei Liu, Guifu Liu, Shaokui Wang, Guiquan Zhang","doi":"10.1186/s12284-023-00680-x","DOIUrl":null,"url":null,"abstract":"<p><p>Rice chalkiness is a key limiting factor of high-quality rice. The breeding of low chalkiness varieties has always been a challenging task due to the complexity of chalkiness and its susceptibility to environmental factors. In previous studies, we identified six QTLs for the percentage of grain chalkiness (PGC), named qPGC5, qPGC6, qPGC8.1, qPGC8.2, qPGC9 and qPGC11, using single-segment substitution lines (SSSLs) with genetic background of Huajingxian 74 (HJX74). In this study, we utilized the six low chalkiness QTLs to develop 17 pyramiding lines with 2-4 QTLs. The results showed that the PGC decreased with the increase of QTLs in the pyramiding lines. The pyramiding lines with 4 QTLs significantly reduced the chalkiness of rice and reached the best quality level. Among the six QTLs, qPGC5 and qPGC6 showed greater additive effects and were classified as Group A, while the other four QTLs showed smaller additive effects and were classified as Group B. In pyramiding lines, although the presence of epistasis, additivity remained the main component of QTL effects. qPGC5 and qPGC6 showed stronger ability to reduce rice chalkiness, particularly in the environment of high temperature (HT) in the first cropping season (FCS). Our research demonstrates that by pyramiding low chalkiness QTLs, it is feasible to develop the high-quality rice varieties with low chalkiness at the best quality level even in the HT environment of FCS.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"4"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pyramiding of Low Chalkiness QTLs Is an Effective Way to Reduce Rice Chalkiness.\",\"authors\":\"Weifeng Yang, Songliang Chen, Qingwen Hao, Haitao Zhu, Quanya Tan, Shaojun Lin, Guodong Chen, Zhan Li, Suhong Bu, Zupei Liu, Guifu Liu, Shaokui Wang, Guiquan Zhang\",\"doi\":\"10.1186/s12284-023-00680-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice chalkiness is a key limiting factor of high-quality rice. The breeding of low chalkiness varieties has always been a challenging task due to the complexity of chalkiness and its susceptibility to environmental factors. In previous studies, we identified six QTLs for the percentage of grain chalkiness (PGC), named qPGC5, qPGC6, qPGC8.1, qPGC8.2, qPGC9 and qPGC11, using single-segment substitution lines (SSSLs) with genetic background of Huajingxian 74 (HJX74). In this study, we utilized the six low chalkiness QTLs to develop 17 pyramiding lines with 2-4 QTLs. The results showed that the PGC decreased with the increase of QTLs in the pyramiding lines. The pyramiding lines with 4 QTLs significantly reduced the chalkiness of rice and reached the best quality level. Among the six QTLs, qPGC5 and qPGC6 showed greater additive effects and were classified as Group A, while the other four QTLs showed smaller additive effects and were classified as Group B. In pyramiding lines, although the presence of epistasis, additivity remained the main component of QTL effects. qPGC5 and qPGC6 showed stronger ability to reduce rice chalkiness, particularly in the environment of high temperature (HT) in the first cropping season (FCS). Our research demonstrates that by pyramiding low chalkiness QTLs, it is feasible to develop the high-quality rice varieties with low chalkiness at the best quality level even in the HT environment of FCS.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"4\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-023-00680-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-023-00680-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

水稻垩白度是优质水稻的一个关键限制因素。由于垩白度的复杂性及其易受环境因素的影响,低垩白品种的培育一直是一项具有挑战性的任务。在之前的研究中,我们利用以华京仙 74(HJX74)为遗传背景的单段替代系(SSSLs)鉴定出了 6 个谷粒垩白度(PGC)的 QTLs,分别命名为 qPGC5、qPGC6、qPGC8.1、qPGC8.2、qPGC9 和 qPGC11。在本研究中,我们利用 6 个低垩度 QTLs 培育了 17 个具有 2-4 个 QTLs 的金字塔型品系。结果表明,随着金字塔品系中 QTLs 的增加,PGC 下降。具有 4 个 QTLs 的金字塔型品系能显著降低水稻的垩白度,达到最佳品质水平。在6个QTLs中,qPGC5和qPGC6表现出较大的加性效应,被归为A组,而其他4个QTLs表现出较小的加性效应,被归为B组。我们的研究表明,通过对低垩白度 QTL 进行金字塔式排列,可以培育出即使在高温环境下也能达到最佳品质水平的低垩白度优质水稻品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyramiding of Low Chalkiness QTLs Is an Effective Way to Reduce Rice Chalkiness.

Rice chalkiness is a key limiting factor of high-quality rice. The breeding of low chalkiness varieties has always been a challenging task due to the complexity of chalkiness and its susceptibility to environmental factors. In previous studies, we identified six QTLs for the percentage of grain chalkiness (PGC), named qPGC5, qPGC6, qPGC8.1, qPGC8.2, qPGC9 and qPGC11, using single-segment substitution lines (SSSLs) with genetic background of Huajingxian 74 (HJX74). In this study, we utilized the six low chalkiness QTLs to develop 17 pyramiding lines with 2-4 QTLs. The results showed that the PGC decreased with the increase of QTLs in the pyramiding lines. The pyramiding lines with 4 QTLs significantly reduced the chalkiness of rice and reached the best quality level. Among the six QTLs, qPGC5 and qPGC6 showed greater additive effects and were classified as Group A, while the other four QTLs showed smaller additive effects and were classified as Group B. In pyramiding lines, although the presence of epistasis, additivity remained the main component of QTL effects. qPGC5 and qPGC6 showed stronger ability to reduce rice chalkiness, particularly in the environment of high temperature (HT) in the first cropping season (FCS). Our research demonstrates that by pyramiding low chalkiness QTLs, it is feasible to develop the high-quality rice varieties with low chalkiness at the best quality level even in the HT environment of FCS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信