Alberto Maria Albiero, Lorenzo Bevilacqua, Federica Pegoraro, Gianluca Turco, Stefano Momic, Roberto Di Lenarda, Michele Maglione
{"title":"使用计算机辅助设计的修复体外壳实现焊接框架支撑的修复体的机械和抗疲劳性能:体外试验研究。","authors":"Alberto Maria Albiero, Lorenzo Bevilacqua, Federica Pegoraro, Gianluca Turco, Stefano Momic, Roberto Di Lenarda, Michele Maglione","doi":"10.1177/09544119231221189","DOIUrl":null,"url":null,"abstract":"<p><p>Resin coating in implants rehabilitation cannot always be aesthetic, durable and comfortable for the patient mainly due to the limited dimensions of the final structure. Intraoral welding technique and computer-aided designed prosthetic shells may be a solution. This in vitro study evaluates the capacity of load and the weakest point of implant-supported provisional prosthesis using welded titanium framework. Twelve samples were produced to simulate an implant supported fixed prosthetic bridge. Two implants (Ankylos; Dentsply Sirona Implants; Germany) were inserted inside blocks of nanoceramic material produced with a stereolithographic 3D printer. A polymethylmethacrylate (PMMA) resin shell was performed with CAD/CAM and relined on welded framework. Six samples were produced with the same procedure reducing resin thickness. The samples were subjected to fatigue test (6,500,000 cycles) using ElectroForce 3310 fatigue machine (<i>t</i><sub>1</sub>); subsequently a mechanical compression test using a universal Shimadzu AGS-X 10 machine (<i>t</i><sub>2</sub>). The samples were analyzed with a photographic and radiographic documentation at <i>t</i><sub>0</sub>, <i>t</i><sub>1</sub> and <i>t</i><sub>2</sub>. The samples survived mechanical fatigue test without evidence of failure. The radiographic and photographic evaluation revealed the fracture of resin coating after the mechanical compression test. The samples with minimal resin thickness fractured first. Adequate assessment of the resin thickness is mandatory to improve the longevity of these rehabilitations. CAD-CAM digital prosthetic design allows us to optimize the thicknesses and the prosthetic shapes, allowing us to obtain good degrees of resistance even in the presence of reduced prosthetic spaces.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"250-256"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and fatigue resistance of restorations supported by welded-framework and realized using computer-aided designed prosthetic shells: In vitro pilot study.\",\"authors\":\"Alberto Maria Albiero, Lorenzo Bevilacqua, Federica Pegoraro, Gianluca Turco, Stefano Momic, Roberto Di Lenarda, Michele Maglione\",\"doi\":\"10.1177/09544119231221189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resin coating in implants rehabilitation cannot always be aesthetic, durable and comfortable for the patient mainly due to the limited dimensions of the final structure. Intraoral welding technique and computer-aided designed prosthetic shells may be a solution. This in vitro study evaluates the capacity of load and the weakest point of implant-supported provisional prosthesis using welded titanium framework. Twelve samples were produced to simulate an implant supported fixed prosthetic bridge. Two implants (Ankylos; Dentsply Sirona Implants; Germany) were inserted inside blocks of nanoceramic material produced with a stereolithographic 3D printer. A polymethylmethacrylate (PMMA) resin shell was performed with CAD/CAM and relined on welded framework. Six samples were produced with the same procedure reducing resin thickness. The samples were subjected to fatigue test (6,500,000 cycles) using ElectroForce 3310 fatigue machine (<i>t</i><sub>1</sub>); subsequently a mechanical compression test using a universal Shimadzu AGS-X 10 machine (<i>t</i><sub>2</sub>). The samples were analyzed with a photographic and radiographic documentation at <i>t</i><sub>0</sub>, <i>t</i><sub>1</sub> and <i>t</i><sub>2</sub>. The samples survived mechanical fatigue test without evidence of failure. The radiographic and photographic evaluation revealed the fracture of resin coating after the mechanical compression test. The samples with minimal resin thickness fractured first. Adequate assessment of the resin thickness is mandatory to improve the longevity of these rehabilitations. CAD-CAM digital prosthetic design allows us to optimize the thicknesses and the prosthetic shapes, allowing us to obtain good degrees of resistance even in the presence of reduced prosthetic spaces.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"250-256\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119231221189\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119231221189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mechanical and fatigue resistance of restorations supported by welded-framework and realized using computer-aided designed prosthetic shells: In vitro pilot study.
Resin coating in implants rehabilitation cannot always be aesthetic, durable and comfortable for the patient mainly due to the limited dimensions of the final structure. Intraoral welding technique and computer-aided designed prosthetic shells may be a solution. This in vitro study evaluates the capacity of load and the weakest point of implant-supported provisional prosthesis using welded titanium framework. Twelve samples were produced to simulate an implant supported fixed prosthetic bridge. Two implants (Ankylos; Dentsply Sirona Implants; Germany) were inserted inside blocks of nanoceramic material produced with a stereolithographic 3D printer. A polymethylmethacrylate (PMMA) resin shell was performed with CAD/CAM and relined on welded framework. Six samples were produced with the same procedure reducing resin thickness. The samples were subjected to fatigue test (6,500,000 cycles) using ElectroForce 3310 fatigue machine (t1); subsequently a mechanical compression test using a universal Shimadzu AGS-X 10 machine (t2). The samples were analyzed with a photographic and radiographic documentation at t0, t1 and t2. The samples survived mechanical fatigue test without evidence of failure. The radiographic and photographic evaluation revealed the fracture of resin coating after the mechanical compression test. The samples with minimal resin thickness fractured first. Adequate assessment of the resin thickness is mandatory to improve the longevity of these rehabilitations. CAD-CAM digital prosthetic design allows us to optimize the thicknesses and the prosthetic shapes, allowing us to obtain good degrees of resistance even in the presence of reduced prosthetic spaces.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.