Yong Hee Kim, Chang Ho Choi, Hyun Woo Song, Eun Kwang Lee, Dong-Pyo Kim, Joon Hak Oh
{"title":"用于高灵敏度乙醇检测的柔性透明石墨烯/金属有机框架复合杂化传感器","authors":"Yong Hee Kim, Chang Ho Choi, Hyun Woo Song, Eun Kwang Lee, Dong-Pyo Kim, Joon Hak Oh","doi":"10.1002/eom2.12433","DOIUrl":null,"url":null,"abstract":"<p>High-performance flexible and transparent chemical sensors are key to achieving wearable electronics. Graphene with high transmittance and electrical properties is a suitable material for flexible and transparent chemical sensors. However, graphene has low detectivity to chemical substances. Here, we report hybrid chemical sensors fabricated by introducing a highly flat and smooth metal–organic framework (MOF) on graphene. The graphene chemical sensors functionalized with MOF on SiO<sub>2</sub>/Si wafer exhibit 22 times higher sensitivity of 6.07 μA ppm<sup>−1</sup> in detecting ethanol than that of pristine graphene transistors of 0.28 μA ppm<sup>−1</sup> and a low detection limit of 1 ppm. Furthermore, a flexible transparent 7 × 7 chemical sensor array exhibits great driving stability after the bending cycles of 10<sup>5</sup> at a bending radius of 1.0 mm and shows sensitivity of 0.11 μA ppm<sup>−1</sup>. Our findings demonstrate an efficient way to improve the chemical sensing ability of graphene for application in wearable chemical sensors.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12433","citationCount":"0","resultStr":"{\"title\":\"A flexible transparent graphene/metal–organic framework complex hybrid chemical sensor for highly sensitive ethanol detection\",\"authors\":\"Yong Hee Kim, Chang Ho Choi, Hyun Woo Song, Eun Kwang Lee, Dong-Pyo Kim, Joon Hak Oh\",\"doi\":\"10.1002/eom2.12433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-performance flexible and transparent chemical sensors are key to achieving wearable electronics. Graphene with high transmittance and electrical properties is a suitable material for flexible and transparent chemical sensors. However, graphene has low detectivity to chemical substances. Here, we report hybrid chemical sensors fabricated by introducing a highly flat and smooth metal–organic framework (MOF) on graphene. The graphene chemical sensors functionalized with MOF on SiO<sub>2</sub>/Si wafer exhibit 22 times higher sensitivity of 6.07 μA ppm<sup>−1</sup> in detecting ethanol than that of pristine graphene transistors of 0.28 μA ppm<sup>−1</sup> and a low detection limit of 1 ppm. Furthermore, a flexible transparent 7 × 7 chemical sensor array exhibits great driving stability after the bending cycles of 10<sup>5</sup> at a bending radius of 1.0 mm and shows sensitivity of 0.11 μA ppm<sup>−1</sup>. Our findings demonstrate an efficient way to improve the chemical sensing ability of graphene for application in wearable chemical sensors.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12433\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A flexible transparent graphene/metal–organic framework complex hybrid chemical sensor for highly sensitive ethanol detection
High-performance flexible and transparent chemical sensors are key to achieving wearable electronics. Graphene with high transmittance and electrical properties is a suitable material for flexible and transparent chemical sensors. However, graphene has low detectivity to chemical substances. Here, we report hybrid chemical sensors fabricated by introducing a highly flat and smooth metal–organic framework (MOF) on graphene. The graphene chemical sensors functionalized with MOF on SiO2/Si wafer exhibit 22 times higher sensitivity of 6.07 μA ppm−1 in detecting ethanol than that of pristine graphene transistors of 0.28 μA ppm−1 and a low detection limit of 1 ppm. Furthermore, a flexible transparent 7 × 7 chemical sensor array exhibits great driving stability after the bending cycles of 105 at a bending radius of 1.0 mm and shows sensitivity of 0.11 μA ppm−1. Our findings demonstrate an efficient way to improve the chemical sensing ability of graphene for application in wearable chemical sensors.