{"title":"杨树 PtEXLA1 基因的特征和功能分析","authors":"","doi":"10.1007/s11816-023-00885-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Expansin plays a crucial role in plant growth and stress resistance as a cell wall relaxation protein. The expansin family consists of four subfamilies: EXPA, EXPB, EXLA, and EXLB. However, a few reports have been previously published investigating <em>EXLA</em> genes. The research here aimed to characterize the <em>PtEXLA1</em> gene from a popular species (<em>P. alba</em> × <em>P. glandulosa</em> CV.84K) and evaluate its role through genetic transformation to understand its contribution to plant growth and stress resistance. The results showed that the <em>PtEXLA1</em> gene was 780 bp in length, encoded 259 amino acids, and had typical characteristics of EXLA. The <em>PtEXLA1</em> transgenic tobacco plants had a larger corolla in comparison to wild-type plants, and exhibited higher resistance to drought, high temperature, and salt stress based on the evaluation of chlorophyll content, relative conductivity, and malondialdehyde content. <em>PtEXLA1</em> can be an efficient gene resource for stress resistance breeding of plants.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"212 3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and functional analysis of the PtEXLA1 gene from poplar\",\"authors\":\"\",\"doi\":\"10.1007/s11816-023-00885-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Expansin plays a crucial role in plant growth and stress resistance as a cell wall relaxation protein. The expansin family consists of four subfamilies: EXPA, EXPB, EXLA, and EXLB. However, a few reports have been previously published investigating <em>EXLA</em> genes. The research here aimed to characterize the <em>PtEXLA1</em> gene from a popular species (<em>P. alba</em> × <em>P. glandulosa</em> CV.84K) and evaluate its role through genetic transformation to understand its contribution to plant growth and stress resistance. The results showed that the <em>PtEXLA1</em> gene was 780 bp in length, encoded 259 amino acids, and had typical characteristics of EXLA. The <em>PtEXLA1</em> transgenic tobacco plants had a larger corolla in comparison to wild-type plants, and exhibited higher resistance to drought, high temperature, and salt stress based on the evaluation of chlorophyll content, relative conductivity, and malondialdehyde content. <em>PtEXLA1</em> can be an efficient gene resource for stress resistance breeding of plants.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":\"212 3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-023-00885-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-023-00885-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 Expansin 作为一种细胞壁松弛蛋白,在植物生长和抗逆性方面发挥着至关重要的作用。扩张素家族由四个亚家族组成:EXPA、EXPB、EXLA和EXLB。然而,此前关于 EXLA 基因的研究报道很少。本文的研究旨在描述一个常用物种(P. alba × P. glandulosa CV.84K)的 PtEXLA1 基因的特征,并通过基因转化评估其作用,以了解其对植物生长和抗逆性的贡献。结果表明,PtEXLA1基因全长780 bp,编码259个氨基酸,具有EXLA的典型特征。根据叶绿素含量、相对电导率和丙二醛含量的评估,PtEXLA1转基因烟草植株的花冠比野生型植株大,对干旱、高温和盐胁迫表现出更强的抗性。PtEXLA1 可作为植物抗逆育种的有效基因资源。
Characterization and functional analysis of the PtEXLA1 gene from poplar
Abstract
Expansin plays a crucial role in plant growth and stress resistance as a cell wall relaxation protein. The expansin family consists of four subfamilies: EXPA, EXPB, EXLA, and EXLB. However, a few reports have been previously published investigating EXLA genes. The research here aimed to characterize the PtEXLA1 gene from a popular species (P. alba × P. glandulosa CV.84K) and evaluate its role through genetic transformation to understand its contribution to plant growth and stress resistance. The results showed that the PtEXLA1 gene was 780 bp in length, encoded 259 amino acids, and had typical characteristics of EXLA. The PtEXLA1 transgenic tobacco plants had a larger corolla in comparison to wild-type plants, and exhibited higher resistance to drought, high temperature, and salt stress based on the evaluation of chlorophyll content, relative conductivity, and malondialdehyde content. PtEXLA1 can be an efficient gene resource for stress resistance breeding of plants.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.