{"title":"纳米电化学传感器:用于超灵敏重金属分析的碳纳米材料","authors":"Qingwei Zhou, Li Fu, Jiangwei Zhu","doi":"10.2174/0115734137281774231214054405","DOIUrl":null,"url":null,"abstract":"Background: Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis. Methods: This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed. Results: High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples Conclusion: Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensors Go Nano: Carbon Nanomaterials for Ultrasensitive Heavy Metal Analysis\",\"authors\":\"Qingwei Zhou, Li Fu, Jiangwei Zhu\",\"doi\":\"10.2174/0115734137281774231214054405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis. Methods: This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed. Results: High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples Conclusion: Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137281774231214054405\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137281774231214054405","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Electrochemical Sensors Go Nano: Carbon Nanomaterials for Ultrasensitive Heavy Metal Analysis
Background: Heavy metal contamination of food and the environment is a major concern worldwide. Conventional detection techniques like atomic absorption spectroscopy (AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) have limitations including high costs and insufficient sensitivity. Electrochemical sensors based on carbon nanomaterials have emerged as an attractive alternative for rapid, affordable, and ultrasensitive heavy metal analysis. Methods: This review summarizes recent advances in using carbon nanomaterials like ordered mesoporous carbon, carbon nanotubes, graphene and carbon dots for electrochemical sensing of toxic heavy metals. Synthesis methods, characterization techniques, functionalization strategies and detection mechanisms are discussed. Results: High surface area, electrical conductivity and electrocatalytic activity of carbon nanomaterials enable preconcentration of metal ions and signal amplification at electrode interfaces. This results in remarkably low detection limits down to parts per trillion levels. Functionalization with metal nanoparticles, molecularly imprinted polymers and other nanocomposites further improves sensor selectivity and sensitivity. These sensors have been applied for the quantitative detection of arsenic, mercury, lead, cadmium, chromium, and other toxic metals in lab samples Conclusion: Electrochemical sensors based on carbon nanotubes, graphene, mesoporous carbon, and carbon dots are rapidly emerging as an ultrasensitive, cost-effective alternative to conventional techniques for on-site screening of heavy metal contamination in food and environment. Further validation using real-world samples and integration into portable field testing kits can enable widespread deployment.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.