Mohammad Amin Moradi , Omid Mohammadrashidi , Navid Niazkar , Morteza Rahbar
{"title":"揭示住宅建筑中的连通性:从平面图中提取邻接矩阵的算法方法","authors":"Mohammad Amin Moradi , Omid Mohammadrashidi , Navid Niazkar , Morteza Rahbar","doi":"10.1016/j.foar.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>In today's world, various approaches and parameters exist for designing a plan and determining its spatial, placement. Hence, various modes for identifying crucial locations can be explored when an architectural plan is designed in different dimensions. While designing all these modes takes considerable time, there are numerous potential applications for artificial intelligence (AI) in this domain. This study aims to compute and use an adjacency matrix to generate architectural residential plans. Additionally, it develops a plan generation algorithm in Rhinoceros software, utilizing the Grasshopper plugin to create a dataset of architectural plans. In the following step, the data was entered into a neural network to identify the architectural plan's type, furniture, icons, and use of spaces, which was achieved using YOLOv4, EfficientDet, YOLOv5, DetectoRS, and RetinaNet. The algorithm's execution, testing, and training were conducted using Darknet and PyTorch. The research dataset comprises 12,000 plans, with 70% employed in the training phase and 30% in the testing phase. The network was appropriately trained practically and precisely in relation to an average precision (AP) resulting of 91.50%. After detecting the types of space use, the main research algorithm has been designed and coded, which includes determining the adjacency matrix of architectural plan spaces in seven stages. All research processes were conducted in Python, including dataset preparation, network object detection, and adjacency matrix algorithm design. Finally, the adjacency matrix is given to the input of the proposed plan generator network, which consequently, based on the resulting adjacency, obtains different placement modes for spaces and furniture.</p></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"13 2","pages":"Pages 370-386"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095263523000924/pdfft?md5=6f75e9c94272d7814676f072bae81e52&pid=1-s2.0-S2095263523000924-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revealing connectivity in residential Architecture: An algorithmic approach to extracting adjacency matrices from floor plans\",\"authors\":\"Mohammad Amin Moradi , Omid Mohammadrashidi , Navid Niazkar , Morteza Rahbar\",\"doi\":\"10.1016/j.foar.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In today's world, various approaches and parameters exist for designing a plan and determining its spatial, placement. Hence, various modes for identifying crucial locations can be explored when an architectural plan is designed in different dimensions. While designing all these modes takes considerable time, there are numerous potential applications for artificial intelligence (AI) in this domain. This study aims to compute and use an adjacency matrix to generate architectural residential plans. Additionally, it develops a plan generation algorithm in Rhinoceros software, utilizing the Grasshopper plugin to create a dataset of architectural plans. In the following step, the data was entered into a neural network to identify the architectural plan's type, furniture, icons, and use of spaces, which was achieved using YOLOv4, EfficientDet, YOLOv5, DetectoRS, and RetinaNet. The algorithm's execution, testing, and training were conducted using Darknet and PyTorch. The research dataset comprises 12,000 plans, with 70% employed in the training phase and 30% in the testing phase. The network was appropriately trained practically and precisely in relation to an average precision (AP) resulting of 91.50%. After detecting the types of space use, the main research algorithm has been designed and coded, which includes determining the adjacency matrix of architectural plan spaces in seven stages. All research processes were conducted in Python, including dataset preparation, network object detection, and adjacency matrix algorithm design. Finally, the adjacency matrix is given to the input of the proposed plan generator network, which consequently, based on the resulting adjacency, obtains different placement modes for spaces and furniture.</p></div>\",\"PeriodicalId\":51662,\"journal\":{\"name\":\"Frontiers of Architectural Research\",\"volume\":\"13 2\",\"pages\":\"Pages 370-386\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095263523000924/pdfft?md5=6f75e9c94272d7814676f072bae81e52&pid=1-s2.0-S2095263523000924-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Architectural Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095263523000924\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095263523000924","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Revealing connectivity in residential Architecture: An algorithmic approach to extracting adjacency matrices from floor plans
In today's world, various approaches and parameters exist for designing a plan and determining its spatial, placement. Hence, various modes for identifying crucial locations can be explored when an architectural plan is designed in different dimensions. While designing all these modes takes considerable time, there are numerous potential applications for artificial intelligence (AI) in this domain. This study aims to compute and use an adjacency matrix to generate architectural residential plans. Additionally, it develops a plan generation algorithm in Rhinoceros software, utilizing the Grasshopper plugin to create a dataset of architectural plans. In the following step, the data was entered into a neural network to identify the architectural plan's type, furniture, icons, and use of spaces, which was achieved using YOLOv4, EfficientDet, YOLOv5, DetectoRS, and RetinaNet. The algorithm's execution, testing, and training were conducted using Darknet and PyTorch. The research dataset comprises 12,000 plans, with 70% employed in the training phase and 30% in the testing phase. The network was appropriately trained practically and precisely in relation to an average precision (AP) resulting of 91.50%. After detecting the types of space use, the main research algorithm has been designed and coded, which includes determining the adjacency matrix of architectural plan spaces in seven stages. All research processes were conducted in Python, including dataset preparation, network object detection, and adjacency matrix algorithm design. Finally, the adjacency matrix is given to the input of the proposed plan generator network, which consequently, based on the resulting adjacency, obtains different placement modes for spaces and furniture.
期刊介绍:
Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.