Janey R. Lienau , Robert W. Buchkowski , Meghan G. Midgley
{"title":"常绿裸子植物丰度驱动美国东部温带森林的地甲虫密度和群落组成","authors":"Janey R. Lienau , Robert W. Buchkowski , Meghan G. Midgley","doi":"10.1016/j.pedobi.2024.150930","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p><span><span><span>Soil invertebrates are abundant and diverse members of forest ecosystems, contributing in large parts to ecosystem functioning. Understanding drivers of soil invertebrate diversity, density, and community composition is critical to inform management practices as forests face rapid changes in land use and climate. Tree community metrics may help predict invertebrate communities due to their large role in shaping </span>microhabitat and soil conditions. </span>Ground beetles are a large family of soil-dwelling invertebrates comprised of multiple functional groups ideal for tying tree communities to invertebrate communities broadly. </span><em>Methods</em> Here, we evaluated the effects of tree diversity, density, and functional groups on ground beetle (<em>Carabidae</em><span>) diversity, density, and community composition in four eastern US temperate forest sites in the National Ecological Observatory Network. </span><em>Results</em><span> We found little evidence to support our hypothesis that higher tree diversity and density would, respectively, lead to higher diversity and density ground beetle communities. Instead, evergreen tree abundance strongly shaped ground beetle density and community composition. Specifically, evergreen stands contained a lower density of ground beetles than deciduous stands. Similarly, the relative abundance of predatory ground beetles increased as the relative abundance of evergreen trees increased. </span><em>Conclusions</em> Our results show that the resource environments created by trees with varying leaf habits are a dominant force driving ground beetle community diversity and density patterns and suggest that future research exploring mechanisms driving this pattern could improve our understanding of plant-soil interactions.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"102 ","pages":"Article 150930"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evergreen gymnosperm tree abundance drives ground beetle density and community composition in eastern US temperate forests\",\"authors\":\"Janey R. Lienau , Robert W. Buchkowski , Meghan G. Midgley\",\"doi\":\"10.1016/j.pedobi.2024.150930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p><span><span><span>Soil invertebrates are abundant and diverse members of forest ecosystems, contributing in large parts to ecosystem functioning. Understanding drivers of soil invertebrate diversity, density, and community composition is critical to inform management practices as forests face rapid changes in land use and climate. Tree community metrics may help predict invertebrate communities due to their large role in shaping </span>microhabitat and soil conditions. </span>Ground beetles are a large family of soil-dwelling invertebrates comprised of multiple functional groups ideal for tying tree communities to invertebrate communities broadly. </span><em>Methods</em> Here, we evaluated the effects of tree diversity, density, and functional groups on ground beetle (<em>Carabidae</em><span>) diversity, density, and community composition in four eastern US temperate forest sites in the National Ecological Observatory Network. </span><em>Results</em><span> We found little evidence to support our hypothesis that higher tree diversity and density would, respectively, lead to higher diversity and density ground beetle communities. Instead, evergreen tree abundance strongly shaped ground beetle density and community composition. Specifically, evergreen stands contained a lower density of ground beetles than deciduous stands. Similarly, the relative abundance of predatory ground beetles increased as the relative abundance of evergreen trees increased. </span><em>Conclusions</em> Our results show that the resource environments created by trees with varying leaf habits are a dominant force driving ground beetle community diversity and density patterns and suggest that future research exploring mechanisms driving this pattern could improve our understanding of plant-soil interactions.</p></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":\"102 \",\"pages\":\"Article 150930\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031405624000015\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624000015","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Evergreen gymnosperm tree abundance drives ground beetle density and community composition in eastern US temperate forests
Purpose
Soil invertebrates are abundant and diverse members of forest ecosystems, contributing in large parts to ecosystem functioning. Understanding drivers of soil invertebrate diversity, density, and community composition is critical to inform management practices as forests face rapid changes in land use and climate. Tree community metrics may help predict invertebrate communities due to their large role in shaping microhabitat and soil conditions. Ground beetles are a large family of soil-dwelling invertebrates comprised of multiple functional groups ideal for tying tree communities to invertebrate communities broadly. Methods Here, we evaluated the effects of tree diversity, density, and functional groups on ground beetle (Carabidae) diversity, density, and community composition in four eastern US temperate forest sites in the National Ecological Observatory Network. Results We found little evidence to support our hypothesis that higher tree diversity and density would, respectively, lead to higher diversity and density ground beetle communities. Instead, evergreen tree abundance strongly shaped ground beetle density and community composition. Specifically, evergreen stands contained a lower density of ground beetles than deciduous stands. Similarly, the relative abundance of predatory ground beetles increased as the relative abundance of evergreen trees increased. Conclusions Our results show that the resource environments created by trees with varying leaf habits are a dominant force driving ground beetle community diversity and density patterns and suggest that future research exploring mechanisms driving this pattern could improve our understanding of plant-soil interactions.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.