Collins Kamunde , Yashodya Wijayakulathilake , Chidozie Okoye , Nirmala Chinnappareddy , Zahra Kalvani , Pius Tetteh , Michael van den Heuvel , Ravinder Sappal , Don Stevens
{"title":"骨骼肌线粒体表型对 H2O2 排放的影响","authors":"Collins Kamunde , Yashodya Wijayakulathilake , Chidozie Okoye , Nirmala Chinnappareddy , Zahra Kalvani , Pius Tetteh , Michael van den Heuvel , Ravinder Sappal , Don Stevens","doi":"10.1016/j.cbpb.2024.110940","DOIUrl":null,"url":null,"abstract":"<div><p><span>Reactive oxygen species (ROS) are a key output of the skeletal muscle mitochondrial information processing system both at rest and during exercise. In skeletal muscle, mitochondrial ROS release depends on multiple factors; however, fiber-type specific differences remain ambiguous in part owing to the use of mitochondria from mammalian muscle that consist of mixed fibers. To elucidate fiber-type specific differences, we used mitochondria isolated from rainbow trout (</span><em>Oncorhynchus mykiss)</em> red and white skeletal muscles that consist of spatially distinct essentially pure red and white fibers. We first characterized the assay conditions for measuring ROS production (as H<sub>2</sub>O<sub>2</sub><span><span>) in isolated fish red and white skeletal muscle mitochondria (RMM and WMM) and thereafter compared the rates of emission during oxidation of different substrates and the responses to mitochondrial </span>electron transport system (ETS) pharmacological modulators. Our results showed that H</span><sub>2</sub>O<sub>2</sub> emission rates by RMM and WMM can be quantified using the same protein concentration and composition of the Amplex UltraRed-horseradish peroxidase (AUR-HRP) detection system. For both RMM and WMM, protein normalized H<sub>2</sub>O<sub>2</sub> emission rates were highest at the lowest protein concentration tested and decreased exponentially thereafter. However, the absolute values of H<sub>2</sub>O<sub>2</sub> emission rates depended on the calibration curves used to convert fluorescent signals to H<sub>2</sub>O<sub>2</sub> while the trends depended on the normalization strategy. We found substantial qualitative and quantitative differences between RMM and WMM in the H<sub>2</sub>O<sub>2</sub> emission rates depending on the substrates being oxidized and their concentrations. Similarly, pharmacological modulators of the ETS altered the magnitudes and trends of the H<sub>2</sub>O<sub>2</sub> emission differently in RMM and WMM. While comparable concentrations of substrates elicited maximal albeit quantitively different emission rates in RMM and WMM, different concentrations of pharmacological ETS modulators may be required for maximal H<sub>2</sub>O<sub>2</sub> emission rates depending on muscle fiber-type. Taken together, our study suggests that biochemical differences exist in RMM compared with WMM that alter substrate oxidation and responses to ETS modulators resulting in fiber-type specific mitochondrial H<sub>2</sub>O<sub>2</sub> emission rates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of skeletal muscle mitochondrial phenotype on H2O2 emission\",\"authors\":\"Collins Kamunde , Yashodya Wijayakulathilake , Chidozie Okoye , Nirmala Chinnappareddy , Zahra Kalvani , Pius Tetteh , Michael van den Heuvel , Ravinder Sappal , Don Stevens\",\"doi\":\"10.1016/j.cbpb.2024.110940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Reactive oxygen species (ROS) are a key output of the skeletal muscle mitochondrial information processing system both at rest and during exercise. In skeletal muscle, mitochondrial ROS release depends on multiple factors; however, fiber-type specific differences remain ambiguous in part owing to the use of mitochondria from mammalian muscle that consist of mixed fibers. To elucidate fiber-type specific differences, we used mitochondria isolated from rainbow trout (</span><em>Oncorhynchus mykiss)</em> red and white skeletal muscles that consist of spatially distinct essentially pure red and white fibers. We first characterized the assay conditions for measuring ROS production (as H<sub>2</sub>O<sub>2</sub><span><span>) in isolated fish red and white skeletal muscle mitochondria (RMM and WMM) and thereafter compared the rates of emission during oxidation of different substrates and the responses to mitochondrial </span>electron transport system (ETS) pharmacological modulators. Our results showed that H</span><sub>2</sub>O<sub>2</sub> emission rates by RMM and WMM can be quantified using the same protein concentration and composition of the Amplex UltraRed-horseradish peroxidase (AUR-HRP) detection system. For both RMM and WMM, protein normalized H<sub>2</sub>O<sub>2</sub> emission rates were highest at the lowest protein concentration tested and decreased exponentially thereafter. However, the absolute values of H<sub>2</sub>O<sub>2</sub> emission rates depended on the calibration curves used to convert fluorescent signals to H<sub>2</sub>O<sub>2</sub> while the trends depended on the normalization strategy. We found substantial qualitative and quantitative differences between RMM and WMM in the H<sub>2</sub>O<sub>2</sub> emission rates depending on the substrates being oxidized and their concentrations. Similarly, pharmacological modulators of the ETS altered the magnitudes and trends of the H<sub>2</sub>O<sub>2</sub> emission differently in RMM and WMM. While comparable concentrations of substrates elicited maximal albeit quantitively different emission rates in RMM and WMM, different concentrations of pharmacological ETS modulators may be required for maximal H<sub>2</sub>O<sub>2</sub> emission rates depending on muscle fiber-type. Taken together, our study suggests that biochemical differences exist in RMM compared with WMM that alter substrate oxidation and responses to ETS modulators resulting in fiber-type specific mitochondrial H<sub>2</sub>O<sub>2</sub> emission rates.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495924000071\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000071","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of skeletal muscle mitochondrial phenotype on H2O2 emission
Reactive oxygen species (ROS) are a key output of the skeletal muscle mitochondrial information processing system both at rest and during exercise. In skeletal muscle, mitochondrial ROS release depends on multiple factors; however, fiber-type specific differences remain ambiguous in part owing to the use of mitochondria from mammalian muscle that consist of mixed fibers. To elucidate fiber-type specific differences, we used mitochondria isolated from rainbow trout (Oncorhynchus mykiss) red and white skeletal muscles that consist of spatially distinct essentially pure red and white fibers. We first characterized the assay conditions for measuring ROS production (as H2O2) in isolated fish red and white skeletal muscle mitochondria (RMM and WMM) and thereafter compared the rates of emission during oxidation of different substrates and the responses to mitochondrial electron transport system (ETS) pharmacological modulators. Our results showed that H2O2 emission rates by RMM and WMM can be quantified using the same protein concentration and composition of the Amplex UltraRed-horseradish peroxidase (AUR-HRP) detection system. For both RMM and WMM, protein normalized H2O2 emission rates were highest at the lowest protein concentration tested and decreased exponentially thereafter. However, the absolute values of H2O2 emission rates depended on the calibration curves used to convert fluorescent signals to H2O2 while the trends depended on the normalization strategy. We found substantial qualitative and quantitative differences between RMM and WMM in the H2O2 emission rates depending on the substrates being oxidized and their concentrations. Similarly, pharmacological modulators of the ETS altered the magnitudes and trends of the H2O2 emission differently in RMM and WMM. While comparable concentrations of substrates elicited maximal albeit quantitively different emission rates in RMM and WMM, different concentrations of pharmacological ETS modulators may be required for maximal H2O2 emission rates depending on muscle fiber-type. Taken together, our study suggests that biochemical differences exist in RMM compared with WMM that alter substrate oxidation and responses to ETS modulators resulting in fiber-type specific mitochondrial H2O2 emission rates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.