利用深度学习探索伊斯坦布尔证券交易所的情绪

IF 6.3 2区 经济学 Q1 BUSINESS, FINANCE
Alev Atak
{"title":"利用深度学习探索伊斯坦布尔证券交易所的情绪","authors":"Alev Atak","doi":"10.1016/j.bir.2023.12.010","DOIUrl":null,"url":null,"abstract":"<p>Sentiment analysis holds immense importance in finance and economics, addressing crucial issues such as principal–agent dynamics and information imbalances. The rise of natural language processing signifies a groundbreaking era in sentiment analysis, enabling the effective extraction of insights from textual data. Our research investigates the impact of qualitative financial data on firm valuation, utilizing sentiment extracted from annual financial disclosures, focusing on companies listed on the Borsa Istanbul Stock Exchange from 1998 to 2022. Employing a pre-trained transformer model, we develop sentiment indices and integrate textual data using a system-generalized method of moments. Our study aims to uncover how sentiment expressed in financial disclosures aids in mitigating challenges related to asymmetric information.</p>","PeriodicalId":46690,"journal":{"name":"Borsa Istanbul Review","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the sentiment in Borsa Istanbul with deep learning\",\"authors\":\"Alev Atak\",\"doi\":\"10.1016/j.bir.2023.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sentiment analysis holds immense importance in finance and economics, addressing crucial issues such as principal–agent dynamics and information imbalances. The rise of natural language processing signifies a groundbreaking era in sentiment analysis, enabling the effective extraction of insights from textual data. Our research investigates the impact of qualitative financial data on firm valuation, utilizing sentiment extracted from annual financial disclosures, focusing on companies listed on the Borsa Istanbul Stock Exchange from 1998 to 2022. Employing a pre-trained transformer model, we develop sentiment indices and integrate textual data using a system-generalized method of moments. Our study aims to uncover how sentiment expressed in financial disclosures aids in mitigating challenges related to asymmetric information.</p>\",\"PeriodicalId\":46690,\"journal\":{\"name\":\"Borsa Istanbul Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Borsa Istanbul Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bir.2023.12.010\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Borsa Istanbul Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.bir.2023.12.010","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

情感分析在金融和经济领域具有极其重要的意义,可解决委托代理动态和信息不平衡等关键问题。自然语言处理技术的兴起标志着情感分析进入了一个开创性的时代,可以从文本数据中有效地提取洞察力。我们的研究利用从年度财务披露中提取的情感数据,调查了定性财务数据对公司估值的影响,重点研究了 1998 年至 2022 年在伊斯坦布尔证券交易所上市的公司。我们采用预先训练好的转换器模型,开发了情感指数,并使用系统广义矩方法整合了文本数据。我们的研究旨在揭示财务披露中表达的情感如何帮助减轻与信息不对称相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the sentiment in Borsa Istanbul with deep learning

Sentiment analysis holds immense importance in finance and economics, addressing crucial issues such as principal–agent dynamics and information imbalances. The rise of natural language processing signifies a groundbreaking era in sentiment analysis, enabling the effective extraction of insights from textual data. Our research investigates the impact of qualitative financial data on firm valuation, utilizing sentiment extracted from annual financial disclosures, focusing on companies listed on the Borsa Istanbul Stock Exchange from 1998 to 2022. Employing a pre-trained transformer model, we develop sentiment indices and integrate textual data using a system-generalized method of moments. Our study aims to uncover how sentiment expressed in financial disclosures aids in mitigating challenges related to asymmetric information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
3.80%
发文量
130
审稿时长
26 days
期刊介绍: Peer Review under the responsibility of Borsa İstanbul Anonim Sirketi. Borsa İstanbul Review provides a scholarly platform for empirical financial studies including but not limited to financial markets and institutions, financial economics, investor behavior, financial centers and market structures, corporate finance, recent economic and financial trends. Micro and macro data applications and comparative studies are welcome. Country coverage includes advanced, emerging and developing economies. In particular, we would like to publish empirical papers with significant policy implications and encourage submissions in the following areas: Research Topics: • Investments and Portfolio Management • Behavioral Finance • Financial Markets and Institutions • Market Microstructure • Islamic Finance • Financial Risk Management • Valuation • Capital Markets Governance • Financial Regulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信