{"title":"复杂的根瘤蚜-昆虫-植物相互作用的演变","authors":"Raymond J. St. Leger","doi":"10.1016/j.funbio.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Metarhizium</span></span><span><span><span> species interact with plants, insects, and microbes within a diffuse coevolutionary framework that benefits soil health, biodiversity, and plant growth. The insect host ranges of these fungi vary greatly. Specialization to a narrow host range usually occurs in the tropics with its stable insect populations, and is characterized by the rapid evolution of existing protein sequences, sexual recombination, and small genomes. Host-generalists are associated with temperate regions and ephemeral insect populations. Their mutualistic plant-colonizing lifestyle increases survival when insects are rare, while facultative entomopathogenicity feeds both the fungi and plants when insects are common. Generalists have lost meiosis and associated genome defense mechanisms, enabling </span>gene duplications<span><span> to diversify functions related to plant colonization and host exploitation. Horizontal gene transfer events via transposons have also contributed to host range changes, while parasexuality combines beneficial mutations within individual clones of generalists. There is also a lot of </span>genetic variation in insect populations and both pathogen virulence and </span></span>insect immunity are linked with variations in stress responses. Thus, susceptibility to generalists can vary due to non-specific resistance to multiple stressors, multipurpose physical and chemical barriers, and heterogeneity in physiological and behavioral factors, such as sleep.</span></div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"128 8","pages":"Pages 2513-2528"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of complex Metarhizium-insect-plant interactions\",\"authors\":\"Raymond J. St. Leger\",\"doi\":\"10.1016/j.funbio.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span><span>Metarhizium</span></span><span><span><span> species interact with plants, insects, and microbes within a diffuse coevolutionary framework that benefits soil health, biodiversity, and plant growth. The insect host ranges of these fungi vary greatly. Specialization to a narrow host range usually occurs in the tropics with its stable insect populations, and is characterized by the rapid evolution of existing protein sequences, sexual recombination, and small genomes. Host-generalists are associated with temperate regions and ephemeral insect populations. Their mutualistic plant-colonizing lifestyle increases survival when insects are rare, while facultative entomopathogenicity feeds both the fungi and plants when insects are common. Generalists have lost meiosis and associated genome defense mechanisms, enabling </span>gene duplications<span><span> to diversify functions related to plant colonization and host exploitation. Horizontal gene transfer events via transposons have also contributed to host range changes, while parasexuality combines beneficial mutations within individual clones of generalists. There is also a lot of </span>genetic variation in insect populations and both pathogen virulence and </span></span>insect immunity are linked with variations in stress responses. Thus, susceptibility to generalists can vary due to non-specific resistance to multiple stressors, multipurpose physical and chemical barriers, and heterogeneity in physiological and behavioral factors, such as sleep.</span></div></div>\",\"PeriodicalId\":12683,\"journal\":{\"name\":\"Fungal biology\",\"volume\":\"128 8\",\"pages\":\"Pages 2513-2528\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614624000011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624000011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
The evolution of complex Metarhizium-insect-plant interactions
Metarhizium species interact with plants, insects, and microbes within a diffuse coevolutionary framework that benefits soil health, biodiversity, and plant growth. The insect host ranges of these fungi vary greatly. Specialization to a narrow host range usually occurs in the tropics with its stable insect populations, and is characterized by the rapid evolution of existing protein sequences, sexual recombination, and small genomes. Host-generalists are associated with temperate regions and ephemeral insect populations. Their mutualistic plant-colonizing lifestyle increases survival when insects are rare, while facultative entomopathogenicity feeds both the fungi and plants when insects are common. Generalists have lost meiosis and associated genome defense mechanisms, enabling gene duplications to diversify functions related to plant colonization and host exploitation. Horizontal gene transfer events via transposons have also contributed to host range changes, while parasexuality combines beneficial mutations within individual clones of generalists. There is also a lot of genetic variation in insect populations and both pathogen virulence and insect immunity are linked with variations in stress responses. Thus, susceptibility to generalists can vary due to non-specific resistance to multiple stressors, multipurpose physical and chemical barriers, and heterogeneity in physiological and behavioral factors, such as sleep.
期刊介绍:
Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.