Yimin Guo , Yajun Guo , Ping Xiong , Fan Yang , Chengde Zhang
{"title":"用于触觉式工业物联网的安全实用的端到端认证方案","authors":"Yimin Guo , Yajun Guo , Ping Xiong , Fan Yang , Chengde Zhang","doi":"10.1016/j.pmcj.2024.101877","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the Industrial Internet of Things (IIoT), </span>haptic<span><span><span> control of machines or robots can be managed remotely. However, with the emergence of Tactile Industrial Internet of Things (TIIoT), the transmission of haptic data over public channels has raised security and privacy concerns. In such an environment, mutual authentication between haptic users and remotely controlled entities is crucial to prevent illegal control by adversaries. Therefore, we propose an end-to-end </span>authentication scheme, SecTIIoT, to establish secure communication between haptic users and remote </span>IoT<span> devices. The scheme addresses security issues by using lightweight hash cryptographic primitives and employs a useful piggyback strategy to improve authentication efficiency. We demonstrate that SecTIIoT is resilient to various known attacks with formal security proofs and informal security analysis. Furthermore, our detailed performance analysis shows that SecTIIoT outperforms existing lightweight authentication schemes as it provides more security features while reducing computation and communication costs.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A provably secure and practical end-to-end authentication scheme for tactile Industrial Internet of Things\",\"authors\":\"Yimin Guo , Yajun Guo , Ping Xiong , Fan Yang , Chengde Zhang\",\"doi\":\"10.1016/j.pmcj.2024.101877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In the Industrial Internet of Things (IIoT), </span>haptic<span><span><span> control of machines or robots can be managed remotely. However, with the emergence of Tactile Industrial Internet of Things (TIIoT), the transmission of haptic data over public channels has raised security and privacy concerns. In such an environment, mutual authentication between haptic users and remotely controlled entities is crucial to prevent illegal control by adversaries. Therefore, we propose an end-to-end </span>authentication scheme, SecTIIoT, to establish secure communication between haptic users and remote </span>IoT<span> devices. The scheme addresses security issues by using lightweight hash cryptographic primitives and employs a useful piggyback strategy to improve authentication efficiency. We demonstrate that SecTIIoT is resilient to various known attacks with formal security proofs and informal security analysis. Furthermore, our detailed performance analysis shows that SecTIIoT outperforms existing lightweight authentication schemes as it provides more security features while reducing computation and communication costs.</span></span></p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224000038\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000038","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A provably secure and practical end-to-end authentication scheme for tactile Industrial Internet of Things
In the Industrial Internet of Things (IIoT), haptic control of machines or robots can be managed remotely. However, with the emergence of Tactile Industrial Internet of Things (TIIoT), the transmission of haptic data over public channels has raised security and privacy concerns. In such an environment, mutual authentication between haptic users and remotely controlled entities is crucial to prevent illegal control by adversaries. Therefore, we propose an end-to-end authentication scheme, SecTIIoT, to establish secure communication between haptic users and remote IoT devices. The scheme addresses security issues by using lightweight hash cryptographic primitives and employs a useful piggyback strategy to improve authentication efficiency. We demonstrate that SecTIIoT is resilient to various known attacks with formal security proofs and informal security analysis. Furthermore, our detailed performance analysis shows that SecTIIoT outperforms existing lightweight authentication schemes as it provides more security features while reducing computation and communication costs.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.