Simon Häuser;Matthias R. Schweizer;Sascha Keller;Andres Conca;Moritz Hofherr;Evangelos Papaioannou;Benjamin Stadtmüller;Burkard Hillebrands;Martin Aeschlimann;Mathias Weiler
{"title":"CoFeB/ 正常金属/铂三层膜中的自旋传输和磁接近效应","authors":"Simon Häuser;Matthias R. Schweizer;Sascha Keller;Andres Conca;Moritz Hofherr;Evangelos Papaioannou;Benjamin Stadtmüller;Burkard Hillebrands;Martin Aeschlimann;Mathias Weiler","doi":"10.1109/LMAG.2023.3340122","DOIUrl":null,"url":null,"abstract":"We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with \n<inline-formula><tex-math>$\\rm X=Al,Cr$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$\\rm Ta$</tex-math></inline-formula>\n. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magnetic proximity effect (MPE), which is suppressed by the introduction of the interlayer. The induced ferromagnetic order in the Pt layer is confirmed by element-sensitive transverse magneto-optical Kerr spectroscopy at the M\n<inline-formula><tex-math>$_{2,3}$</tex-math></inline-formula>\n and N\n<inline-formula><tex-math>$_{7}$</tex-math></inline-formula>\n absorption edges. We discuss the impact of the MPE on parameter extraction in the spin transport model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin Transport and Magnetic Proximity Effect in CoFeB/Normal Metal/Pt Trilayers\",\"authors\":\"Simon Häuser;Matthias R. Schweizer;Sascha Keller;Andres Conca;Moritz Hofherr;Evangelos Papaioannou;Benjamin Stadtmüller;Burkard Hillebrands;Martin Aeschlimann;Mathias Weiler\",\"doi\":\"10.1109/LMAG.2023.3340122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with \\n<inline-formula><tex-math>$\\\\rm X=Al,Cr$</tex-math></inline-formula>\\n, and \\n<inline-formula><tex-math>$\\\\rm Ta$</tex-math></inline-formula>\\n. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magnetic proximity effect (MPE), which is suppressed by the introduction of the interlayer. The induced ferromagnetic order in the Pt layer is confirmed by element-sensitive transverse magneto-optical Kerr spectroscopy at the M\\n<inline-formula><tex-math>$_{2,3}$</tex-math></inline-formula>\\n and N\\n<inline-formula><tex-math>$_{7}$</tex-math></inline-formula>\\n absorption edges. We discuss the impact of the MPE on parameter extraction in the spin transport model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10345676/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10345676/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spin Transport and Magnetic Proximity Effect in CoFeB/Normal Metal/Pt Trilayers
We present a study of the damping and spin pumping properties of CoFeB/X/Pt systems with
$\rm X=Al,Cr$
, and
$\rm Ta$
. We show that the total damping of the CoFeB/Pt systems is strongly reduced when an interlayer is introduced independently of the material. Using a model that considers spin relaxation, we identify the origin of this contribution in the magnetically polarized Pt formed by the magnetic proximity effect (MPE), which is suppressed by the introduction of the interlayer. The induced ferromagnetic order in the Pt layer is confirmed by element-sensitive transverse magneto-optical Kerr spectroscopy at the M
$_{2,3}$
and N
$_{7}$
absorption edges. We discuss the impact of the MPE on parameter extraction in the spin transport model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.