{"title":"应用贝叶斯结构健康监测:倾斜仪数据异常检测和预测","authors":"David K. E. Green, A. Jaspan","doi":"10.1002/pamm.202300132","DOIUrl":null,"url":null,"abstract":"Inclinometer probes are devices that can be used to measure deformations within earthwork slopes. This paper demonstrates a novel application of Bayesian techniques to real‐world inclinometer data, providing both anomaly detection and forecasting. Specifically, this paper details an analysis of data collected from across the entire UK rail network.","PeriodicalId":510616,"journal":{"name":"PAMM","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applied Bayesian structural health monitoring: Inclinometer data anomaly detection and forecasting\",\"authors\":\"David K. E. Green, A. Jaspan\",\"doi\":\"10.1002/pamm.202300132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inclinometer probes are devices that can be used to measure deformations within earthwork slopes. This paper demonstrates a novel application of Bayesian techniques to real‐world inclinometer data, providing both anomaly detection and forecasting. Specifically, this paper details an analysis of data collected from across the entire UK rail network.\",\"PeriodicalId\":510616,\"journal\":{\"name\":\"PAMM\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PAMM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pamm.202300132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pamm.202300132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applied Bayesian structural health monitoring: Inclinometer data anomaly detection and forecasting
Inclinometer probes are devices that can be used to measure deformations within earthwork slopes. This paper demonstrates a novel application of Bayesian techniques to real‐world inclinometer data, providing both anomaly detection and forecasting. Specifically, this paper details an analysis of data collected from across the entire UK rail network.