{"title":"生态安全驾驶行为建模计算技术综述","authors":"N. Jain, Sangeeta Mittal","doi":"10.15282/ijame.20.2.2023.08.0806","DOIUrl":null,"url":null,"abstract":"Driving is a complex task involving the perception of the driving event, planning response, and action. Safe driving ensures the vehicle’s and its passengers’ safety, whereas economical driving brings down fuel consumption. Eventually, eco-safe driving that ensures economical as well as safe driving is the best bet. This review paper provides a systematic comprehensive analysis across cross-cutting dimensions such as data collection mechanisms, features affecting eco-safe driving, computational models for driving behavior analysis, driver motivational approaches towards eco-safe driving, exploiting research gaps and opportunities for further research in this domain. Driving behavior along with environmental context, including weather information, road conditions, traffic flow and time of travel, represent the most effective factors for doing eco-safe driving analysis. 82% of reviewed papers recommended OBD as a reliable data collection source, along with supplementary information from body sensors and cameras. The K-Mean clustering is an effective driving profiling technique clubbed with dimensionality reduction techniques based on Random Forest regressor, PCA and autoencoders. Deep learning and ensemble learning-based safety approaches utilizing Recurrent Convolutional Networks (RCN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) and Decision Tree (DT) have achieved impressive accuracies surpassing 99%, followed by Neural Networks (NN), Support Vector Machines (SVM) and Random Forest (RF) with accuracy ranging from 91% to 96%. Long Short-Term Memory (LSTM) yielded superior Area Under Curve (AUC of 0.836) for fuel prediction, in comparison to Support Vector Machines (SVM) and Neural Networks (NN). Gated Recurrent Unit (GRU) represents fine-grained accurate fuel-prediction methods with accuracy comparable to Long Short-Term Memory (LSTM). Prominent research gaps identified during this study are the lack of a comprehensive approach covering all aspects related to safety, fuel economy, the scope of improvement in real-time driving risk assessment at appropriate granularity level, missing effective and engaging driving feedback, dealing with uncertain and incomplete driving events, driver’s personal traits affecting driving safety and fuel-economy. The review will help in establishing the readiness of automation of driving analysis for reinforcement of eco-safe driving for various kinds of vehicles plug-in hybrid vehicles, hybrid electric vehicles, electric vehicles, and self-driving cars.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Computational Techniques for Modelling Eco-Safe Driving Behavior\",\"authors\":\"N. Jain, Sangeeta Mittal\",\"doi\":\"10.15282/ijame.20.2.2023.08.0806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driving is a complex task involving the perception of the driving event, planning response, and action. Safe driving ensures the vehicle’s and its passengers’ safety, whereas economical driving brings down fuel consumption. Eventually, eco-safe driving that ensures economical as well as safe driving is the best bet. This review paper provides a systematic comprehensive analysis across cross-cutting dimensions such as data collection mechanisms, features affecting eco-safe driving, computational models for driving behavior analysis, driver motivational approaches towards eco-safe driving, exploiting research gaps and opportunities for further research in this domain. Driving behavior along with environmental context, including weather information, road conditions, traffic flow and time of travel, represent the most effective factors for doing eco-safe driving analysis. 82% of reviewed papers recommended OBD as a reliable data collection source, along with supplementary information from body sensors and cameras. The K-Mean clustering is an effective driving profiling technique clubbed with dimensionality reduction techniques based on Random Forest regressor, PCA and autoencoders. Deep learning and ensemble learning-based safety approaches utilizing Recurrent Convolutional Networks (RCN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) and Decision Tree (DT) have achieved impressive accuracies surpassing 99%, followed by Neural Networks (NN), Support Vector Machines (SVM) and Random Forest (RF) with accuracy ranging from 91% to 96%. Long Short-Term Memory (LSTM) yielded superior Area Under Curve (AUC of 0.836) for fuel prediction, in comparison to Support Vector Machines (SVM) and Neural Networks (NN). Gated Recurrent Unit (GRU) represents fine-grained accurate fuel-prediction methods with accuracy comparable to Long Short-Term Memory (LSTM). Prominent research gaps identified during this study are the lack of a comprehensive approach covering all aspects related to safety, fuel economy, the scope of improvement in real-time driving risk assessment at appropriate granularity level, missing effective and engaging driving feedback, dealing with uncertain and incomplete driving events, driver’s personal traits affecting driving safety and fuel-economy. The review will help in establishing the readiness of automation of driving analysis for reinforcement of eco-safe driving for various kinds of vehicles plug-in hybrid vehicles, hybrid electric vehicles, electric vehicles, and self-driving cars.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.2.2023.08.0806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.08.0806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Review of Computational Techniques for Modelling Eco-Safe Driving Behavior
Driving is a complex task involving the perception of the driving event, planning response, and action. Safe driving ensures the vehicle’s and its passengers’ safety, whereas economical driving brings down fuel consumption. Eventually, eco-safe driving that ensures economical as well as safe driving is the best bet. This review paper provides a systematic comprehensive analysis across cross-cutting dimensions such as data collection mechanisms, features affecting eco-safe driving, computational models for driving behavior analysis, driver motivational approaches towards eco-safe driving, exploiting research gaps and opportunities for further research in this domain. Driving behavior along with environmental context, including weather information, road conditions, traffic flow and time of travel, represent the most effective factors for doing eco-safe driving analysis. 82% of reviewed papers recommended OBD as a reliable data collection source, along with supplementary information from body sensors and cameras. The K-Mean clustering is an effective driving profiling technique clubbed with dimensionality reduction techniques based on Random Forest regressor, PCA and autoencoders. Deep learning and ensemble learning-based safety approaches utilizing Recurrent Convolutional Networks (RCN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) and Decision Tree (DT) have achieved impressive accuracies surpassing 99%, followed by Neural Networks (NN), Support Vector Machines (SVM) and Random Forest (RF) with accuracy ranging from 91% to 96%. Long Short-Term Memory (LSTM) yielded superior Area Under Curve (AUC of 0.836) for fuel prediction, in comparison to Support Vector Machines (SVM) and Neural Networks (NN). Gated Recurrent Unit (GRU) represents fine-grained accurate fuel-prediction methods with accuracy comparable to Long Short-Term Memory (LSTM). Prominent research gaps identified during this study are the lack of a comprehensive approach covering all aspects related to safety, fuel economy, the scope of improvement in real-time driving risk assessment at appropriate granularity level, missing effective and engaging driving feedback, dealing with uncertain and incomplete driving events, driver’s personal traits affecting driving safety and fuel-economy. The review will help in establishing the readiness of automation of driving analysis for reinforcement of eco-safe driving for various kinds of vehicles plug-in hybrid vehicles, hybrid electric vehicles, electric vehicles, and self-driving cars.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.