{"title":"论洛伦兹-闵科夫斯基平面中的定向长度比","authors":"Abdulaziz Açikgöz","doi":"10.17776/csj.1133780","DOIUrl":null,"url":null,"abstract":"The linear structure of the Lorentz-Minkowski plane is almost the same as Euclidean plane. But, there is one different aspect. These planes have different distance functions. So, it can be interesting to study the Lorentz analogues of topics that include the distance concept in the Euclidean plane. Thus, in this study, we show that the relationship between Euclidean and Lorentz distances is given depending on the slope of the line segment. Following, we investigate Lorentz analogues of Thales’ theorem, Angle Bisector theorems, Menelaus’ theorem and Ceva’s theorem.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Directed Length Ratios in the Lorentz-Minkowski Plane\",\"authors\":\"Abdulaziz Açikgöz\",\"doi\":\"10.17776/csj.1133780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear structure of the Lorentz-Minkowski plane is almost the same as Euclidean plane. But, there is one different aspect. These planes have different distance functions. So, it can be interesting to study the Lorentz analogues of topics that include the distance concept in the Euclidean plane. Thus, in this study, we show that the relationship between Euclidean and Lorentz distances is given depending on the slope of the line segment. Following, we investigate Lorentz analogues of Thales’ theorem, Angle Bisector theorems, Menelaus’ theorem and Ceva’s theorem.\",\"PeriodicalId\":10906,\"journal\":{\"name\":\"Cumhuriyet Science Journal\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cumhuriyet Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17776/csj.1133780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1133780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Directed Length Ratios in the Lorentz-Minkowski Plane
The linear structure of the Lorentz-Minkowski plane is almost the same as Euclidean plane. But, there is one different aspect. These planes have different distance functions. So, it can be interesting to study the Lorentz analogues of topics that include the distance concept in the Euclidean plane. Thus, in this study, we show that the relationship between Euclidean and Lorentz distances is given depending on the slope of the line segment. Following, we investigate Lorentz analogues of Thales’ theorem, Angle Bisector theorems, Menelaus’ theorem and Ceva’s theorem.