使用 Python 编程语言对印度尼西亚石油和天然气生产预测进行回归和相关分析

Kasliono Kasliono, Edi Suharmono, Povi Povi, Risca Meriani, Niken Candraningrum
{"title":"使用 Python 编程语言对印度尼西亚石油和天然气生产预测进行回归和相关分析","authors":"Kasliono Kasliono, Edi Suharmono, Povi Povi, Risca Meriani, Niken Candraningrum","doi":"10.37012/jtik.v9i2.1756","DOIUrl":null,"url":null,"abstract":"Penelitian ini memiliki tujuan untuk mengetahui suatu cara pendekatan analisis data menggunakan bahasa pemrograman Python yang dapat diterapkan dalam industri minyak bumi dan gas alam serta memprediksi hasil produksi minyak bumi dan gas alam sampai pada tahun 2030. Penggunaan metode dalam penelitian ini yaitu dengan pendekatan deskriptif kuantitatif. Tujuan digunakannya metode ini yaitu untuk menguraikan secara sistematis peristiwa atau kejadian yang terjadi melalui penggunaan angka-angka dalam menganalisis data penelitian ini. Data tersebut kemudian diolah dengan bahasa pemrograman Python menggunakan library seperti Pandas, NumPy, Matplotlib, dan Scikit-Learn. Dalam penelitian ini data diolah dengan cara analisis regresi dan korelasi. Hasil penelitian yang diperoleh yaitu terjadinya penurunan yang cukup signifikan dari hasil prediksi produksi minyak bumi dan gas alam setiap tahunnya. Hasil prediksi produksi minyak bumi dan gas alam yang paling besar terjadi pada tahun 2022 yang menghasilkan minyak bumi sebesar 210.218,41 (000 barel) dan gas alam sebesar 2.709.176 (MMscf). Sedangkan hasil prediksi produksi minyak bumi dan gas alam pada tahun 2030 yaitu sebesar 116.827,69 (000 barel) dan 2.597.292 (MMscf). Minyak bumi dan gas alam dalam penelitian ini mempunyai keterkaitan yang lemah dengan nilai korelasi positif. Nilai korelasi sebesar 0.387558 menunjukkan bahwa adanya kecenderungan ketika produksi minyak bumi meningkat, produksi gas alam juga cenderung meningkat, begitupun sebaliknya.","PeriodicalId":203870,"journal":{"name":"Jurnal Teknologi Informatika dan Komputer","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Regresi dan Korelasi untuk Proyeksi Produksi Minyak Bumi dan Gas Alam Indonesia menggunakan Bahasa Pemrograman Python\",\"authors\":\"Kasliono Kasliono, Edi Suharmono, Povi Povi, Risca Meriani, Niken Candraningrum\",\"doi\":\"10.37012/jtik.v9i2.1756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini memiliki tujuan untuk mengetahui suatu cara pendekatan analisis data menggunakan bahasa pemrograman Python yang dapat diterapkan dalam industri minyak bumi dan gas alam serta memprediksi hasil produksi minyak bumi dan gas alam sampai pada tahun 2030. Penggunaan metode dalam penelitian ini yaitu dengan pendekatan deskriptif kuantitatif. Tujuan digunakannya metode ini yaitu untuk menguraikan secara sistematis peristiwa atau kejadian yang terjadi melalui penggunaan angka-angka dalam menganalisis data penelitian ini. Data tersebut kemudian diolah dengan bahasa pemrograman Python menggunakan library seperti Pandas, NumPy, Matplotlib, dan Scikit-Learn. Dalam penelitian ini data diolah dengan cara analisis regresi dan korelasi. Hasil penelitian yang diperoleh yaitu terjadinya penurunan yang cukup signifikan dari hasil prediksi produksi minyak bumi dan gas alam setiap tahunnya. Hasil prediksi produksi minyak bumi dan gas alam yang paling besar terjadi pada tahun 2022 yang menghasilkan minyak bumi sebesar 210.218,41 (000 barel) dan gas alam sebesar 2.709.176 (MMscf). Sedangkan hasil prediksi produksi minyak bumi dan gas alam pada tahun 2030 yaitu sebesar 116.827,69 (000 barel) dan 2.597.292 (MMscf). Minyak bumi dan gas alam dalam penelitian ini mempunyai keterkaitan yang lemah dengan nilai korelasi positif. Nilai korelasi sebesar 0.387558 menunjukkan bahwa adanya kecenderungan ketika produksi minyak bumi meningkat, produksi gas alam juga cenderung meningkat, begitupun sebaliknya.\",\"PeriodicalId\":203870,\"journal\":{\"name\":\"Jurnal Teknologi Informatika dan Komputer\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informatika dan Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37012/jtik.v9i2.1756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informatika dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37012/jtik.v9i2.1756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在找出如何使用 Python 编程语言进行数据分析,并将其应用于石油和天然气行业,预测 2030 年前的石油和天然气产量。本研究使用的方法是定量描述法。使用这种方法的目的是在分析研究数据时,通过数字系统地描述发生的事件或现象。然后使用 Python 编程语言,使用 Pandas、NumPy、Matplotlib 和 Scikit-Learn 等库来处理数据。本研究通过回归分析和相关分析对数据进行了处理。得出的结果是每年石油和天然气的预测产量大幅下降。石油和天然气产量最大的预测结果出现在 2022 年,石油产量为 210 218.41(000 桶),天然气产量为 2 709 176(MMscf)。而 2030 年的石油和天然气产量预测结果为 116,827.69 (000 桶)和 2,597,292 (MMscf)。本研究中石油和天然气的关系较弱,相关值为正。0.387558 的相关值表明,当石油产量增加时,天然气产量也有增加的趋势,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Regresi dan Korelasi untuk Proyeksi Produksi Minyak Bumi dan Gas Alam Indonesia menggunakan Bahasa Pemrograman Python
Penelitian ini memiliki tujuan untuk mengetahui suatu cara pendekatan analisis data menggunakan bahasa pemrograman Python yang dapat diterapkan dalam industri minyak bumi dan gas alam serta memprediksi hasil produksi minyak bumi dan gas alam sampai pada tahun 2030. Penggunaan metode dalam penelitian ini yaitu dengan pendekatan deskriptif kuantitatif. Tujuan digunakannya metode ini yaitu untuk menguraikan secara sistematis peristiwa atau kejadian yang terjadi melalui penggunaan angka-angka dalam menganalisis data penelitian ini. Data tersebut kemudian diolah dengan bahasa pemrograman Python menggunakan library seperti Pandas, NumPy, Matplotlib, dan Scikit-Learn. Dalam penelitian ini data diolah dengan cara analisis regresi dan korelasi. Hasil penelitian yang diperoleh yaitu terjadinya penurunan yang cukup signifikan dari hasil prediksi produksi minyak bumi dan gas alam setiap tahunnya. Hasil prediksi produksi minyak bumi dan gas alam yang paling besar terjadi pada tahun 2022 yang menghasilkan minyak bumi sebesar 210.218,41 (000 barel) dan gas alam sebesar 2.709.176 (MMscf). Sedangkan hasil prediksi produksi minyak bumi dan gas alam pada tahun 2030 yaitu sebesar 116.827,69 (000 barel) dan 2.597.292 (MMscf). Minyak bumi dan gas alam dalam penelitian ini mempunyai keterkaitan yang lemah dengan nilai korelasi positif. Nilai korelasi sebesar 0.387558 menunjukkan bahwa adanya kecenderungan ketika produksi minyak bumi meningkat, produksi gas alam juga cenderung meningkat, begitupun sebaliknya.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信