{"title":"利用机器学习识别和管理农作物的椰子植物病害","authors":"Wijethunga C.D, Ishanka K.C, Parindya S.D.N, Priyadarshani T.J.N, Buddika Harshanath, Samantha Rajapaksha","doi":"10.31033/ijemr.13.5.13","DOIUrl":null,"url":null,"abstract":"This research paper introduces an innovative approach to improve the quality and sustainability of coconut farming and exports in Sri Lanka. It employs advanced image processing techniques to detect, classify, and grade pests and diseases early in coconut palms. This allows for swift interventions and reduces the need for harsh chemical treatments, promoting eco-friendly farming practices. Furthermore, the study goes beyond pest control to evaluate optimal conditions for coconut growth, considering factors like soil quality, water availability, and climate. It empowers farmers with insights to maximize coconut palm yield. Additionally, the system incorporates a growth prediction component using historical data and machine learning, enabling farmers to plan and allocate resources effectively. By combining early pest detection, pest management, growth classification, and predictive analysis, this research offers a comprehensive strategy to enhance Sri Lanka's coconut quality for export. This approach not only improves product quality but also safeguards the industry's sustainability by reducing economic losses and ecological impact. Leveraging cutting-edge tools like image processing and machine learning, this research aims to boost efficiency, economic viability, and international competitiveness in Sri Lanka's coconut farming sector.","PeriodicalId":508757,"journal":{"name":"International Journal of Engineering and Management Research","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coconut Plant Disease Identified and Management for Agriculture Crops using Machine Learning\",\"authors\":\"Wijethunga C.D, Ishanka K.C, Parindya S.D.N, Priyadarshani T.J.N, Buddika Harshanath, Samantha Rajapaksha\",\"doi\":\"10.31033/ijemr.13.5.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper introduces an innovative approach to improve the quality and sustainability of coconut farming and exports in Sri Lanka. It employs advanced image processing techniques to detect, classify, and grade pests and diseases early in coconut palms. This allows for swift interventions and reduces the need for harsh chemical treatments, promoting eco-friendly farming practices. Furthermore, the study goes beyond pest control to evaluate optimal conditions for coconut growth, considering factors like soil quality, water availability, and climate. It empowers farmers with insights to maximize coconut palm yield. Additionally, the system incorporates a growth prediction component using historical data and machine learning, enabling farmers to plan and allocate resources effectively. By combining early pest detection, pest management, growth classification, and predictive analysis, this research offers a comprehensive strategy to enhance Sri Lanka's coconut quality for export. This approach not only improves product quality but also safeguards the industry's sustainability by reducing economic losses and ecological impact. Leveraging cutting-edge tools like image processing and machine learning, this research aims to boost efficiency, economic viability, and international competitiveness in Sri Lanka's coconut farming sector.\",\"PeriodicalId\":508757,\"journal\":{\"name\":\"International Journal of Engineering and Management Research\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Management Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31033/ijemr.13.5.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31033/ijemr.13.5.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coconut Plant Disease Identified and Management for Agriculture Crops using Machine Learning
This research paper introduces an innovative approach to improve the quality and sustainability of coconut farming and exports in Sri Lanka. It employs advanced image processing techniques to detect, classify, and grade pests and diseases early in coconut palms. This allows for swift interventions and reduces the need for harsh chemical treatments, promoting eco-friendly farming practices. Furthermore, the study goes beyond pest control to evaluate optimal conditions for coconut growth, considering factors like soil quality, water availability, and climate. It empowers farmers with insights to maximize coconut palm yield. Additionally, the system incorporates a growth prediction component using historical data and machine learning, enabling farmers to plan and allocate resources effectively. By combining early pest detection, pest management, growth classification, and predictive analysis, this research offers a comprehensive strategy to enhance Sri Lanka's coconut quality for export. This approach not only improves product quality but also safeguards the industry's sustainability by reducing economic losses and ecological impact. Leveraging cutting-edge tools like image processing and machine learning, this research aims to boost efficiency, economic viability, and international competitiveness in Sri Lanka's coconut farming sector.