Michael Falconbridge, Robert L. Stamps, Mark Edwards, David R. Badcock
{"title":"目标运动错误判断反映了对背景的错误认知;利用连续心理物理学揭示了这一点","authors":"Michael Falconbridge, Robert L. Stamps, Mark Edwards, David R. Badcock","doi":"10.1177/20416695231214439","DOIUrl":null,"url":null,"abstract":"Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results.","PeriodicalId":47194,"journal":{"name":"I-Perception","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics\",\"authors\":\"Michael Falconbridge, Robert L. Stamps, Mark Edwards, David R. Badcock\",\"doi\":\"10.1177/20416695231214439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results.\",\"PeriodicalId\":47194,\"journal\":{\"name\":\"I-Perception\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"I-Perception\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/20416695231214439\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"I-Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/20416695231214439","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics
Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results.