David B. Spencer , Marlon E. Sorge , Mark A. Skinner
{"title":"为卫星防撞机动规划制定 \"行为规范","authors":"David B. Spencer , Marlon E. Sorge , Mark A. Skinner","doi":"10.1016/j.jsse.2023.11.012","DOIUrl":null,"url":null,"abstract":"<div><p>Several commercial companies, as well as various nations, have proposed to deploy or are deploying many satellites in Low Earth Orbit<span> (LEO). These large constellations will greatly increase the number of satellites operating in relatively narrow altitude regions of space. The added space traffic in these regions will create many close approaches between the members of the large constellations and other space operators. These close approach situations can necessitate maneuver(s) to avoid a potential collision. Should both satellites have maneuvering capability, the question of how the overall collision avoidance<span> procedures should be executed is raised. Some constellations may employ automated collision avoidance systems which interact differently than conventional human-in-the-loop systems. Interactions between an automated system and another operational satellite, between two automated systems or two nonautonomous systems present new challenges for executing effective collision avoidance. Additionally, the existence of non-maneuverable satellites and space debris continues to pose additional challenges. This paper is the first of several papers that will be documenting an International Academy of Astronautics study on this topic.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing “norms of behavior” for satellite collision avoidance maneuver planning\",\"authors\":\"David B. Spencer , Marlon E. Sorge , Mark A. Skinner\",\"doi\":\"10.1016/j.jsse.2023.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several commercial companies, as well as various nations, have proposed to deploy or are deploying many satellites in Low Earth Orbit<span> (LEO). These large constellations will greatly increase the number of satellites operating in relatively narrow altitude regions of space. The added space traffic in these regions will create many close approaches between the members of the large constellations and other space operators. These close approach situations can necessitate maneuver(s) to avoid a potential collision. Should both satellites have maneuvering capability, the question of how the overall collision avoidance<span> procedures should be executed is raised. Some constellations may employ automated collision avoidance systems which interact differently than conventional human-in-the-loop systems. Interactions between an automated system and another operational satellite, between two automated systems or two nonautonomous systems present new challenges for executing effective collision avoidance. Additionally, the existence of non-maneuverable satellites and space debris continues to pose additional challenges. This paper is the first of several papers that will be documenting an International Academy of Astronautics study on this topic.</span></span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896723001374\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723001374","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Establishing “norms of behavior” for satellite collision avoidance maneuver planning
Several commercial companies, as well as various nations, have proposed to deploy or are deploying many satellites in Low Earth Orbit (LEO). These large constellations will greatly increase the number of satellites operating in relatively narrow altitude regions of space. The added space traffic in these regions will create many close approaches between the members of the large constellations and other space operators. These close approach situations can necessitate maneuver(s) to avoid a potential collision. Should both satellites have maneuvering capability, the question of how the overall collision avoidance procedures should be executed is raised. Some constellations may employ automated collision avoidance systems which interact differently than conventional human-in-the-loop systems. Interactions between an automated system and another operational satellite, between two automated systems or two nonautonomous systems present new challenges for executing effective collision avoidance. Additionally, the existence of non-maneuverable satellites and space debris continues to pose additional challenges. This paper is the first of several papers that will be documenting an International Academy of Astronautics study on this topic.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.