Lev Danilin, Tatyana Lugovitskaya, Elvira Kolmachikhina, Denis Rogozhnikov
{"title":"表面活性剂-硝酸-水体系的胶体-化学特性","authors":"Lev Danilin, Tatyana Lugovitskaya, Elvira Kolmachikhina, Denis Rogozhnikov","doi":"10.15826/chimtech.2023.10.4.08","DOIUrl":null,"url":null,"abstract":"The behavior of the surfactants Tween 80, SaS and alkyl betaine in aqueous and nitric acid environments as promising additives for nitrate leaching of hard-to-process ore concentrates of non-ferrous metals was studied. The influence of surfactant concentration (0.04–1.28 g/dm3), nitric acid concentration (0.1–10 g/dm3) and temperature (295–343 K) on the surface tension, critical micelle concentration (CMC), pH and optical density of aqueous surfactant solutions and surfactant–HNO3–H2O systems was found. The critical micelle concentration of the surfactants used was estimated. A positive effect of nitric acid on the surface activity of surfactants was discovered, which manifests itself in a decrease in both the CMC and the surface tension at the liquid–gas interface. The values of surface activity and Gibbs energy of surfactant micelle formation in aqueous and nitric acid media were calculated. Associative processes in the solutions and compositions were confirmed by measuring the optical density of the systems under study.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":"20 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloid-chemical properties of surfactant–nitric acid–water systems\",\"authors\":\"Lev Danilin, Tatyana Lugovitskaya, Elvira Kolmachikhina, Denis Rogozhnikov\",\"doi\":\"10.15826/chimtech.2023.10.4.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of the surfactants Tween 80, SaS and alkyl betaine in aqueous and nitric acid environments as promising additives for nitrate leaching of hard-to-process ore concentrates of non-ferrous metals was studied. The influence of surfactant concentration (0.04–1.28 g/dm3), nitric acid concentration (0.1–10 g/dm3) and temperature (295–343 K) on the surface tension, critical micelle concentration (CMC), pH and optical density of aqueous surfactant solutions and surfactant–HNO3–H2O systems was found. The critical micelle concentration of the surfactants used was estimated. A positive effect of nitric acid on the surface activity of surfactants was discovered, which manifests itself in a decrease in both the CMC and the surface tension at the liquid–gas interface. The values of surface activity and Gibbs energy of surfactant micelle formation in aqueous and nitric acid media were calculated. Associative processes in the solutions and compositions were confirmed by measuring the optical density of the systems under study.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":\"20 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.4.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.4.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Colloid-chemical properties of surfactant–nitric acid–water systems
The behavior of the surfactants Tween 80, SaS and alkyl betaine in aqueous and nitric acid environments as promising additives for nitrate leaching of hard-to-process ore concentrates of non-ferrous metals was studied. The influence of surfactant concentration (0.04–1.28 g/dm3), nitric acid concentration (0.1–10 g/dm3) and temperature (295–343 K) on the surface tension, critical micelle concentration (CMC), pH and optical density of aqueous surfactant solutions and surfactant–HNO3–H2O systems was found. The critical micelle concentration of the surfactants used was estimated. A positive effect of nitric acid on the surface activity of surfactants was discovered, which manifests itself in a decrease in both the CMC and the surface tension at the liquid–gas interface. The values of surface activity and Gibbs energy of surfactant micelle formation in aqueous and nitric acid media were calculated. Associative processes in the solutions and compositions were confirmed by measuring the optical density of the systems under study.