规范形式的布罗卡尔-拉马努扬问题解的存在性

Wataru Takeda
{"title":"规范形式的布罗卡尔-拉马努扬问题解的存在性","authors":"Wataru Takeda","doi":"10.1090/bproc/181","DOIUrl":null,"url":null,"abstract":"<p>The Brocard–Ramanujan problem, which is an unsolved problem in number theory, is to find integer solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(x,\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x squared minus 1 equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x^2-1=\\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Many analogs of this problem are currently being considered. As one example, it is known that there are at most only finitely many algebraic integer solutions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(x, \\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, up to a unit factor, to the equations <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_K(x) = \\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">N_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the norms of number fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K slash bold upper Q\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"bold\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K/\\mathbf Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we construct infinitely many number fields <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N_K(x) = \\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"22\"> <mml:semantics> <mml:mn>22</mml:mn> <mml:annotation encoding=\"application/x-tex\">22</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solutions for positive integers <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of the solutions to the Brocard–Ramanujan problem for norm forms\",\"authors\":\"Wataru Takeda\",\"doi\":\"10.1090/bproc/181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Brocard–Ramanujan problem, which is an unsolved problem in number theory, is to find integer solutions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis x comma script l right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(x,\\\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x squared minus 1 equals script l factorial\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x^2-1=\\\\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Many analogs of this problem are currently being considered. As one example, it is known that there are at most only finitely many algebraic integer solutions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis x comma script l right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(x, \\\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, up to a unit factor, to the equations <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N_K(x) = \\\\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Subscript upper K\\\"> <mml:semantics> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">N_K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the norms of number fields <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K slash bold upper Q\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"bold\\\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K/\\\\mathbf Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper, we construct infinitely many number fields <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Subscript upper K Baseline left-parenthesis x right-parenthesis equals script l factorial\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mi>K</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>!</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">N_K(x) = \\\\ell !</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has at least <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"22\\\"> <mml:semantics> <mml:mn>22</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">22</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solutions for positive integers <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布罗卡尔-拉马努扬问题是数论中的一个未解难题,其目的是找到 x 2 - 1 = ℓ 的整数解 ( x , ℓ ) (x,\ell ) ! x^2-1=\ell ! .这个问题的许多类似问题目前都在研究之中。举例来说,已知 N K ( x ) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ , N_K(x) = ℓ ! N_K(x) = \ell ! 其中 N K N_K 是数域 K / Q K/\mathbf Q 的规范。在本文中,我们构造了无限多的数域 K K,使得 N K ( x ) = ℓ ! N_K(x) = \ell ! 对于正整数 ℓ \ell 至少有 22 22 个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of the solutions to the Brocard–Ramanujan problem for norm forms

The Brocard–Ramanujan problem, which is an unsolved problem in number theory, is to find integer solutions ( x , ) (x,\ell ) of x 2 1 = ! x^2-1=\ell ! . Many analogs of this problem are currently being considered. As one example, it is known that there are at most only finitely many algebraic integer solutions ( x , ) (x, \ell ) , up to a unit factor, to the equations N K ( x ) = ! N_K(x) = \ell ! , where N K N_K are the norms of number fields K / Q K/\mathbf Q . In this paper, we construct infinitely many number fields K K such that N K ( x ) = ! N_K(x) = \ell ! has at least 22 22 solutions for positive integers \ell .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信